

 Navigation

 	
 index

 	
 next |

 	Surfing in Kansas

Home

Welcome to the home of Eric Holscher on the web.

I talk about software development, mostly in the realm of Django. I am interested in the web, testing, mobile apps, documentation, and much more.

I currently live in Portland, Oregon, and love to explore the outdoors.
Whether on bike or foot, I spend as much time as possible out and about,
checking out the various beauty that the world holds.

Information

	About me

	Projects

	Résumé

Activities

	Bike Touring

	Backpacking

Blog Entries

2013

	A Walk in the Woods

	Announcing Write the Docs

	Prepping for the Pacific Crest Trail

	Help me improve documentation

	A letter to an old friend

	Writing a Beginners Guide to Documentation

	Sphinx Live Preview

	Google Summer of Code Book Sprint 2013

	Announcing Grok the Docs

	A new theme for Read the Docs

2012

	Why Read the Docs matters

	The festival that felt like a hug

	Help fund Read the Docs

	Interesting projects on Read the Docs: Teaching

	2012 Year in Review

2011

	Handling Django Settings Files

	Read the Docs Updates

	Using Reviewboard with Git

	Read the Docs Update

2010

	A simple Perl IRCBot

	Django Inspect: A generic introspection API for Django models

	Large Problems in Django, Mostly Solved: Documentation

	The role of designers in the Django community

	Large Problems in Django, Mostly Solved: Delayed Execution

	Announcing Read The Docs

	Lessons Learned From The Dash: Easy Django Deployment

	A better webhook for code hosting

	Lessons Learned From The Dash: Nginx SSI

	New features on Read The Docs

	Conference Fun

	Djangocon Talk

	Virtualenv Tips

	Building a Django App Server with Chef: Part 3

	Building a Django App Server with Chef: Part 4

	Site upgrades

	Correct commands to check out and update VCS repos

	Using Haystack to index non-database content

	Required Reading

	Celery Tips

	Django Testing Mailing List

	Running Hudson matrix builds on multiple machines

	Using ZNC, an IRC bouncer

	Building a Django App Server with Chef: Part 1

	Building a Django App Server with Chef: Part 2

2009

	Django now has fast tests

	Review of Pro Django by Marty Alchin (1/2)

	Encouraging Web Interaction for University Students

	Django Conventions Project Update

	Using rsync with django

	Incredibly useful SSH flag

	Automatically apply patches from Django’s (or any) Trac

	Google Summer of Code

	Twitter Spam

	Really easy SSH tunneling

	Pycon and Euro Djangocon

	Testing AJAX Views in Django

	Django’s Summer of Code students announced!

	Adding Google Analytics to Sphinx Docs

	A playground for Django Template tags and filters

	EuroDjangoCon Talk: Testing Django

	Migrating Django Test Fixtures Using South

	Enable setup.py test in your Django apps

	Pretty Django Error Pages

	Hacker Book Club

	Debugging Django in Production Revisited

	Token Testing Talk Slides: Djangocon 2009

	Easily Running the Django Test Suite

	What they didn’t teach me in college

	Large Problems in Django, Mostly Solved: APIs

	The importance of striving for awesome.

	Django Testing Code Coverage

	You should stay for the sprints

	Announcing Kong: A server description and deployment testing tool

	Finding Missing Indexes That Django Wants (Postgres)

	Writing Code with Designers

	Large Problems in Django, Mostly Solved: Search

	Correct way to handle default model fields.

	Class Based Template Tags

	Making Template Tag Parsing Easier

	Adding testing to pip

	Large Problems in Django, Mostly Solved: Database Migrations

	Correct way to handle mobile browsers

Warning

Everything past here is from college. I was living in a bit of a different world back then, so buyer beware.

2008

	America...*sigh*

	Hackers and Painters

	Weekend

	Iowa

	My dad was wikipedia

	OCR with context

	Facebook Scrapage

	Facebook Update

	Earthquakes in politics

	OpenID FTW

	Cool Music Video

	Code on Launchpad

	Books to read

	NCUR 22

	Bill Clinton

	Security Vulnerabilities on the Internet

	Graduate

	Job hunt

	Awesome 3d

	Perfect Abstraction

	Website Interface Design

	Why I love the CLI

	Time to use that education

	Obama & Va

	Work this week

	Sweet ads

	Another neat ad

	All majors are the same

	Crazy times

	Predictive text FTW

	My Second Poem Ever

	Browser Login Discovery

	Power through conversation

	Graduation

	Lawrence Day 1

	Goodbye East Coast part 1

	JOB!!

	Things I say all the time

	Bear Head

	Change of RSS address

	Living well

	DjangoCon September 6-7, at Google!

	Automating tests in Django

	Testmaker .002 (Even easier automated testing in Django)

	Beatles Lecture

	Jim Henson before Sesame Street

	DjangoCon 2008

	Setting up Django and mod_wsgi

	Using Mock objects in Django for testing the current date

	Screencast: Debugging with the Django Error Page

	Screencast 2: Logging in Django, for fun and profit

	Using pdb, the Python Debugger (Django Debugging Series, Part 3)

	Easily packaging and distributing Django apps with setuptools and easy_install

	Screencast: Django Command Extensions

	Getting started with Pinax

	Using pdb to debug management commands and unit tests (Debugging Django Series,Part 4)

	Big list of Django tips (and some python tips too)

	A blog post a day keeps the doctor away

	Announcing Django Crawler and django-test-utils

	Practical Django Testing Examples: Views

	The importance of not deleting blog posts (read: ideas)

	Encouraging Testing in Django

	Should reusable apps have templates?

	Debugging Django in Production Environments

	A start to the uber community

	Busy Busy

	Introduction to Python/Django testing: Basic Doctests

	Python gems of my own

	Gentlemans agreement on Django templates

	Luck and a New Life in Lawrence

	Django Aggregator v2 now has tagging, and you should too.

	Testmaker 0.2: Rewritten and improved

	The value of conventions, aka testmaker for template tags.

	Introduction to Python/Django testing: Basic Unit Tests

	New Design

	Post a day in review

	Introduction to Python/Django tests: Fixtures

	Making a Django Uber-Community

	Ponies

	Software that I use: Essentials 2008

	The problem with Django’s Template Tags

	The times, they are a changin

	Starting a Django Conventions Project and Reference

	Year in Review

2007

	Updating website

	Good Software is SO hard to find..

	iPhone

	People

	Music

	Network KVM

	Goal

	UMW Blog Ring

	Digg/Wordpress plugin ideas

	Firefox Extensions I Use

	Cool site: archive.org

	Writing Advice?

	Last semester in stone

	Schoolwork

	Fall is coming (and good content)

	Ideas need context

	Getting Real

	Browser Tabs

	Lego Lovers

	Python Easy Install

	Merry Christmas

	Stanford U

	Django

	First Post

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

 [image: _images/me.jpg]

About me

I currently call Portland, Oregon home. I lived in the woods for over 2 months while walking 800 miles of the Pacific Crest Trail in 2013.

I have previously lived in Lawrence, Kansas for 2.5 years from May 2010-Dec 2012. I lived the rest of my life in Virginia, migrating from the Shennendoah Valley, to Virginia Beach for high school, then to Fredericksburg for college.

I’ve previously worked at these awesome companies:

	Urban Airship

	Lawrence Journal-World

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Projects

Some projects that I have worked on over the years.

	Read The Docs [http://readthedocs.org]

A Django Dash project, allowing users to host their Sphinx documentation easily.

	Write the Docs Conference [http://conf.writethedocs.org]

A conference about all things documentation, held in Portland, Oregon.

	Write the Docs Documentation [http://docs.writethedocs.org]

A resource for writing better documentation, and spreading the general culture of writing documentation in software.

	Django Kong [http://django-kong.rtfd.org]

A wrapper around twill that allows you to do monitoring and basic functional testing of your sites.

	Django Test Utils [http://django-test-utils.rtfd.org]

This is a project of mine to help with the testing of Django applications.

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Résumé

Eric Holscher

757 705 0532

Portland, Oregon

Interests

	Django & Python

	Documentation

	Devops

	Scaling systems

Open Source Projects

	Read the Docs - http://readthedocs.org

	Over 5000 projects

	Over 5 million page views a month

	Standard hosting for Python community

	Member of the Python Software Foundation

Conferences

	Helped organize the Write the Docs conference - http://conf.writethedocs.org

	200+ people came to talk about documentation

	Portland, Oregon on April 8-9 2013

	Has spawned local users groups in multiple cities

Speaking

Spoken at the following conferences on Read the Docs, IRC bots, Testing, and Documentation:

	Open Source Bridge 2012, 2011

	Pyweb Summit 2012

	Djangocon US 2011, 2010

	OSCON 2011

	Djangocon EU 2010, 2009

More information available on Lanyrd: http://lanyrd.com/profile/ericholscher/past/speaking/

Work Experience

January 2013 - July 2013

Pacific Crest Trail

	Trained for 3 months by hiking 50 miles a week

	Hiked 800 miles of the trail before getting injured

	Lived in the woods for 2 months

	Gave my mind and soul room to breathe

December 2010 - January 2013

Urban Airship - Developer & Operations

	Employee 15 at a startup that now has over 150 people

	Assisted moving data centers on the ops team

	Helped scale infrastructure to handle hundreds of millions of messages a day

July 2008 - December 2010

Lawrence Journal-World - Developer

	The birthplace of Django, maintaining the world’s oldest Django codebase

	Worked as Lead developer and defacto sysadmin for the “Internal” team

	Ljworld.com, Lawrence.com, Kusports.com and ~20 other sites

	Worked on the “Commerical” team on Ellington

	Ported Ellington from Django r1290 to 1.0

	Wrote lots of tests and supported the product

March 2006 - May 2008

(Hiatus July 2006-January 2007 while in Australia)

CACI - Developer

	Full Life-cycle development of a Portal-type website for the U.S. Navy

	Wrote a javascript validation library, allowing you to add rules in one line, and saving developers from writing custom javascript for each page

	Used Prototype and Scriptaculous Javascript libraries for AJAX and other development

Education

University of Mary Washington

Bachelor of Science in Computer Science

	Graduated May 2008

	Major GPA of 3.5

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

 [image: _images/bike.png]
Photo: My bike on the Williamette Valley Scenic Bikeway

Bike Touring

After my PCT injury,
I wondered what I could use all of my lightweight camping gear for.
I turned to bike touring,
allowing a machine to handle the stress that my foot obviously isn’t capable of.

August 24, 2013: First overnight

Went on my first bike camping trip to Dodge Park [http://www.portlandoregon.gov/water/47496]

September 7-10, 2013: First Bike Tour, Portland to Eugene

This was a delightful ride in the Oregon fall,
along the Williamette Valley Scenic Bikeway [http://rideoregonride.com/road-routes/willamette-valley-scenic-bikeway/].
I took basically 3 days,
starting with a MAX ride to 158th street in Beaverton.
I then went down to a friend’s going away party.

Main Ride

Total: 185 miles

Day 1: 62 miles - Beaverton to Keizer Rapids City Park

Day 2: 68 miles - Keizer Rapids City Park to Peoria Boat Dock

Day 3: 55 miles - Peoria Boat Dock to Eugene

Thoughts

I quite enjoyed bike touring as an endevour.
It feels a lot like thru hiking,
where you have an overarching goal all the time.
Always moving,
always more miles.
I really enjoyed seeing the country by bike,
though the addition of car traffic wasn’t a welcome one.

Compared to the wilderness experience of backpacking,
I think I enjoy backpacking more.
I was along a relatively populated area of Oregon though,
so I imagine if I went out east in Oregon I would have a more comperable experience.

The actual scenic bikeway also had a distinct lack of camping.
The camp sites I chose were of dubious legality,
though nobody questioned me when I camped.
As far as I can tell,
there is a 80+ mile stretch on the scenic bikeway with no official camping options.
This really limited my comfort level,
because I was having to worry about where I would camp each night.

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

 [image: _images/backpack.jpg]
Photo: Mount Whitney (14505 ft) at Sunrise

Backpacking

Backpacking is a hobby that I have picked up since moving to the Pacific Northwest.

Pacific Crest Trail

I walked on the Pacific Crest Trail from April 15 - June 16 in 2013.
I had to come home due to a stress fracture in my third metatarsal in my left foot,
after walking 800 miles.

I have collected my favorite photos on Flickr [https://www.flickr.com/photos/98071214@N07/sets/72157634560986460/]

Mount St. Helens

I summitted Mount St. Helens in March of 2013,
as a training hike for the PCT.

Mount Hood

I started taking trips around Mount Hood to get my experience in the field.
I have done a few different trips,
mainly in 2012.
A popular one was from Top Spur Trailhead to Cairn Basin.

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

A Walk in the Woods

I’ve recently schemed some very large changes in my life, and I
have been trying to figure out how to blog about it. It all starts
with quitting my job at Urban Airship. I sent an email to the staff
announcing my departure, and I can’t think of a better way to
remember this moment in time than to include it in full in my blog.
So, here is the letter I wrote to everyone at work when I left the
company.

All,

It’s with great anticipation and mixed feelings that I announce the
end of my ride upon the Airship.

For I am leaving to face a greater challenge and a personal life
goal. I will be attempting to walk 2650 miles from Mexico to Canada
along the Pacific Crest Trail starting in the spring. Doing a
thru-hike of the AT or the PCT has long been something I have
wanted to do, and I am in a place in my life where the
responsibilities I have are minimal, so it seems like a great time
to go walk in the woods for 5 months. The approximate timeline is
from April 15~September 30.

[image: Pacific Crest Trail]
Pacific Crest Trail

I will be starting training for the hike immediately, and that is
hard with a full time job. Luckily, I have been offered a contract
gig to work on my side project Read the Docs for as many hours as I
want until I leave. This is another life dream come true, the
ability to get paid to work on an Open Source project that I have
created.

With this confluence of fortune, I leave the Airship for what
should be one of the most amazing years of my life.

I would like to thank everyone who I have had the opportunity to
work with here at UA, because it has been the best job of my life.
Watching the company grow from 15 to over 100 people has been a
formative experience in my professional life. I can only hope that
I will get another chance to watch such an amazing group of people
build such a great company again.

My last day will be Friday, Jan 18th. So, feel free to come accost
me while I’m still here and ask me questions, or call me crazy, or
give me hugs. I’ll also be kicking around in Portland until April,
so I should still be around for the PDX Python meetups and other
bits and pieces.

My personal email address is eric@ericholscher.com if you want to
keep in touch. I will be blogging about my experience on my website
at http://ericholscher.com, if you want to follow along. There
isn’t anything there yet because this wasn’t public knowledge, but
I will start posting about it soon.

[image: Cop High Five]
Cop High Five

“Live in each season as it passes; breathe the air, drink the
drink, taste the fruit, and resign yourself to the influence of the
earth.” ― Henry David Thoreau, Walden

Cheers, Eric

tl;dr:

	I’m leaving Urban Airship.

	I’m going to be hiking 2650 miles from Mexico to Canada on the
Pacfic Crest Trail starting on April 15, hopefully ending near the
end of September.

	I’ve gotten a contracting gig to work on Read the Docs (my open
source side project) for as many hours as I wish until then.

	How much I love you: lots

tl;dr gif:

[image: Oregon Trail]
Oregon Trail

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Announcing Write the Docs

Documentation is one of the most important parts of a software
project. However, a lot of projects have little or no documentation
to help their (potential) users use the software. A few years ago
we started Read the Docs [https://readthedocs.org] to help make
hosting documentation easier. Part of the reason was that if
hosting documentation was a solved problem, it would make people
more likely to write docs.

However, there is still a large hole in the documentation world
around writing documentation. There are some resources about it,
but they are scattered around the internet in random places.
Write the Docs [http://conf.writethedocs.org] is trying to solve
this problem by getting all of the people that care about
documentation in a room, to improve the art and science of
documentation.

Write the Docs is two things. The first and more immediately
interesting is that it is a
two day conference [http://conf.writethedocs.org] in Portland,
Oregon. Held on April 8-9,
it will bring the community that exists around documentation together.
Through this event we will spread a lot of knowledge about how,
why, and when to write documentation.

The second part of the project is a
resource [http://docs.writethedocs.org/en/latest/] for people
who are writing documentation. It will solve the problems of
someone who has the question:
I want to write docs, but what do I write?!. It will be a home
of best practices around documentation, and a lot more. We hope it
will serve as a growing resource of all things documentation. We
want to build the canonical source for people who have questions
about documentation, and to further the art of documentation in all
forms.

Write the Docs will also
be a community [http://docs.writethedocs.org/en/latest/about/community.html]
that you can become involed in. We are announcing a mailing list
that will serve as a place to ask questions, and bring together all
those who write the docs. In addition, the
Write the Docs Sphinx repository [https://github.com/writethedocs/docs]
is open source, and accepting contributions to the information
there.

All of the above is a work in progress. I hope you join me in
supporting and contributing these projects. I believe that they
will advance the state of the software community in many ways. The
vision [http://docs.writethedocs.org/en/latest/about/vision.html]
for the project lays out some of the things that we want to
accomplish.

Remember: Docs or it didn’t happen :)

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Prepping for the Pacific Crest Trail

My time in Portland in winding down, and the trail is approaching in my minds eye. I leave on the 14th of April, and 6 in the morning. Setting out on a jet-plane to San Diego. I will spend the night on the 14th and be transported to the trailhead at sunrise the following day.

Prep

I have been attempting to walk 10 miles a day, and gain 1000 feet of elevation. I have been using a Fitbit to keep objective data about my day, and I’ve been doing pretty well in this department. My longest hike was a 20 mile hike that went from Terwilliger Blvd in Southwest Portland, along the west hills, into Forest Park. That day exhausted me, but it was good to see my body could do 20 miles in a day, seeing that’s what I need to average to complete my journey.

Gear

I have my gear pretty much dialed in. My gear list [http://postholer.com/journal/viewGearlist.php?sid=8e4a8a7092365242b81959e2570b2e25&event_id=1504] is available on Postholer, and is mostly up to date. I’m pretty happy with all of my gear selections, having done a couple of test hikes overnight.

Online Presence

I have been gathering my online assets together, and consolidating. I have moved my blog from a Django app into a Sphinx repo hosted on Read the Docs. That will make it much easier to update, and I don’t have to worry about database backups or anything. It’s all based out of a git repo, and hosted on Read the Docs, which is highly available.

This means I only have 1 personal server left, and that is running my IRC bouncer. I will likely keep this around just for fun, but I will likely knock down the buffer size on my bouncer so that it doesn’t overwhelm my phone when I log on in the woods. I’ll want to be able to chat with people and keep logs of the channels I’m in, but I don’t need all the scrollback after a week of walking.

Mental Prep

The big part of the journey currently is just getting my head into a good state. The concept of hiking the PCT is becoming very real, and it’s scary and exciting as hell. I know it will be an amazing experience, but it’s quite the physical feat. It’s also something different; something I have never done anything like before. It’s that nervous feeling that you get when you are pushing your limits.

I am trying to step back from the emotions I’m experiencing to appreciate the experience of it. Much like watching a movie, I need to appreciate the fear and apprehension that I’m experiencing as an artifact of doing something important and necessary. There is common wisdom that goes along the lines of “The things that scare you the most are the most important to do,” and I’m trying to keep that mindset in the front of my mind.

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Help me improve documentation

tl;dr: I don’t have (or want) a job, help fund me [https://www.gittip.com/ericholscher/] to make the documentation world better.

A year ago,
I asked people to help cover the hosting costs of Read the Docs [http://readthedocs.org].
It was successful and the site hosting has been funded ever since.
Simply being hosted isn’t enough.
There are many other aspects to having a healthy community,
including development,
support,
and advocacy.
The approach this time around is aiming to support those aspects as well.

In the last year,
I have gone on to do a lot more to help improve the documentation world.
I want to continue to do this work,
with your help [https://www.gittip.com/ericholscher/].

Work I am doing

	
	Developing and maintaining Read the Docs [http://readthedocs.org]

	
	A website that hosts documentation for ~4000 projects, and has over 5 million pageviews/month.

	
	Co-organizing and producing Write the Docs conference [http://conf.writethedocs.org/]

	
	A community, non-profit conference that gathers 250 people in Portland to talk docs.

	
	Helping organize regional Write the Docs meetups

	
	We currently have meetups in SF, NYC, and Boston, hopefully more coming soon!

	
	Writing documentation [http://docs.writethedocs.org/] about documentation

	
	A growing resource of information about writing docs.

	
	Writing presentations [http://docs.writethedocs.org/en/latest/presentations/] about documentation

	
	The end goal being a set of presentations that people can use to promote documentation at meetups and conferences.

	
	An unreleased project called Grok the Docs

	
	The idea here is to improve documentation through data.

Why it matters

I have talked to many people around the tech world over the last year,
and they all agree that the state of documentation is lacking.
I want to help improve this situation in many ways.

Read the Docs is the defacto documentation hosting tool for Python.
It has also spread into many other communities,
hosting documentation for PHP [http://docs.doctrine-project.org/en/latest/], Javascript [http://docs.casperjs.org/en/latest/], Science [http://docs.julialang.org/en/release-0.1-0/], Games [http://inventory-tweaks.readthedocs.org/en/latest/], Databases [http://docs.couchdb.org/en/latest/], and more.
It removes barriers to people writing documentation,
allowing them to simply get started down a well paved path.

Through my work on Write the Docs,
we are building a community around documentation.
This community is helping to push the state of the art.
Joining together allows us to present a unified face for improving documentation in the open source, and proprietary software worlds.

Grok the Docs is a project that is still in development.
The goal is to use analytics data to improve the browsing experience.
It is very much a research project,
but I really hope Grok the Docs will improve the experience of reading and writing documentation.

Budget

I quit my job earlier this year to hike the Pacific Crest Trail.
I have returned home (after only 800 miles, but that’s a different story),
and want to try living life a bit differently.

I am asking for support on Gittip to help me on this endeavor.
Currently, my living arrangements cost around $1200/month:

	$500 for Rent & Utilities

	$300 for Food

	$250 for Health Insurance

	$80 for Cell Phone

This works out to around $300/week,
which is the way that Gittip keeps track of money.
I hope to achieve independence from money so that I can continue to do work on this important problem.

Note

This is a baseline existence.
Simply enough to make sure I don’t die or starve.
Going to conferences, buying hardware, taxes, and other expenses will need to be figured out too.

Why Gittip?

Gittip supports me without telling me who is giving money.
This allows me to maintain and develop projects without regard to whose interests might be impacted by my work.
This gives me the freedom to work on important things,
without regard for who might stop giving me money.

I also don’t want to promise certain outcomes with the money.
Platforms like Kickstarter and Indiegogo are great for raising money,
but they require that you offer something in return.
I am approaching this more as patronage.
If you like the work I have done,
sponsor me to continue doing more good things.
My interests will change over time,
and I want to have freedom to change direction.

Support me

I don’t want to have to get a job.
I want to continue doing work that I love,
and that I think matters.

If you think that the work that I’m doing is important,
I hope that you support me on Gittip [https://www.gittip.com/ericholscher/].

This is an experiment,
and I have no idea what is going to happen.
So please feel free to give me feedback over email or Twitter [https://twitter.com/ericholscher/].

I started today with $1.75 in gittip, the current tally is:

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

A letter to an old friend

A letter I wrote to an old friend Josh,
after I had come home from the PCT.
It was sent on August 7th, 2013.
It captures my thoughts on the trail pretty well.

Text

Howdy,

Indeed the trail satisfied many parts of the soul. Sadly I hurt my foot and had to end the trail before I reached the end, but I still spent enough time out there to understand some of the lessons it has to teach.

I always like to think back to how life was for me before college. It’s crazy how much of a different person I was going in and coming out. We chiseled away at the possibilities of humanity, and ended up with a pretty good statue at the end.

Being on the trail is the closest that I have had to that feeling in my adult life. You are given the time to think without constraint, and bullshit all day long with amazing people. It feels much like college, in that the friends I’ve made will be life long.

It has changed what I want to do with myself for the foreseeable future, seeking out more situations where the intensity and breadth of the human soul can come to bear. It felt like the most natural thing in the world to slip into walking everyday, and living a simple life.

Simple life with good people, a profound and fundamental way to enjoy the world. It showed me how full of bullshit and tedium the “normal” world can be, and how a reduced subset of choice can really expand your happiness.

The months I spent on the trail were some of the happiest of my life. I will look to hopefully relive them again in a few years, but like many things in life, the first time is likely to be the sweetest. Hopefully I won’t go through life looking backwards, trying to feel it again, and will find solace and peace again.

Coming back to reality has been hard, but Portland is a good place to come back to. I have been surrounding my self with good food, mostly from Farmers Markets. Lots of berries and salads, things you can’t eat on the trail. I am also looking into doing some bike touring, once my foot heals, so that I can still explore. Exploring on bike will be a different experience, but one I think I’ll quite enjoy.

I now also have the experience to go and live in the woods for a week at a time. This freedom opens a lot of possibility for adventure in the future. Having amazing tools, the knowledge , wherewithal, and drive to go out into nature again makes me happy.

May there be many more adventures for us both.

Cheers,

Eric

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Writing a Beginners Guide to Documentation

A few days ago I started a campaign to improve documentation.
Today I have the first results to show from this work.

It started first with a presentation [http://docs.writethedocs.org/en/latest/presentations/#beginner-presentations] that I presented at PDX Python here in Portland.
The talk was very well received,
so I decided to write it up.

So, I present A beginners guide to writing documentation [http://docs.writethedocs.org/en/latest/writing/beginners-guide-to-docs/].
It is still very much a work in progress,
so I hope that you can provide feedback.
The idea behind the presentation and document is to allow people modify and present it themselves.
I am hoping to build documents and presentations for other aspects of documentation as well.
If you want to give this presentation,
I would love for you to email me.

As I said,
this work was done as part of my ongoing work on Documentation.
If you think this work is important,
you should support me on Gittip [http://www.gittip.com/ericholscher].

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Sphinx Live Preview

For a long time,
there has been a live preview site for reStructuredText: http://rst.ninjs.org/.
It is really fantastic for learning the language.
The immediate feedback is really valuable in helping you expirment and see how things work.

I think that this tool would be great for people to have with Sphinx [http://sphinx-doc.org/] as well.
I know a lot of people use Sphinx,
and then end up on that page,
and random things don’t work because they are extensions to reStructuredText.
So, I went ahead and forked the app to support Sphinx.

I present: http://livesphinx.herokuapp.com/.

It is still very much a work in progress.
The output should be themed nicely,
and support syntax highlighting.
If you have any feedback or requests,
please tweet [http://twitter.com/ericholscher] or email me.

This project was done as part of my ongoing work to improve documentation.
If you think this work is important,
you should support me on Gittip [http://www.gittip.com/ericholscher].

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Google Summer of Code Book Sprint 2013

Or how I learned to stop worrying and write a book.

Last week, I flew down to Mountain View, Ca for the Google Summer of Code Book Sprint.
It is an event that brings open source projects together to write a book in a week.
20 people and 3 projects produced books over a sunny and well-fed week.
Kindly hosted by Google,
we spent 5 days hanging out at their campus writing away.
The three projects involved were:

	OpenMRS - A medical records system used in many developing countries, originally created to help with AIDS in Africa.

	BRL-CAD - A CAD program for developing 3D models, one of the first open source projects from the United States Military.

	Mallard - An XML based documentation framework, from the Gnome Documentation Team.

I was what they called a “free agent”,
someone not involved in a specific project that would help out.
Free agents are useful for providing an outside viewpoint to the projects.

Writing a book was an amazing experience.
It has always felt out of my reach,
but time limiting it to a week (really 3 days),
made the goal more approachable.
I hope this post will help you conceptualize the process of how we wrote the book,
and possibly think about doing it yourself.
After this experience I think it is something that anyone can do,
as long as you keep the scope small.

You can see the finished book [http://flossmanuals.net/openmrs-developers-guide/] for OpenMRS online.

Monday

Heresy

On Monday,
we got together to play some games to break the ice.
We were asked to write our most polarizing documentation viewpoints on an index card,
and they were read out loud in front of the room.
People arranged themselves along a spectrum of agreement and disagreement.
Physically arranged themselves,
by walking to different corners of the room.
Then we presented reasons for our views on the topics mentioned.

Some examples are:

	Developers MUST write documentation

	WYSIWYG editors are evil

This exercise acted to show how diverse a crowd we had.
Some people were developers,
some were tech writers,
some were students,
some were teachers,
people ranged all across the spectrum of experience.
You learned to respect where people were coming,
which might be very different from your background.

Audience and Outcomes

After the ice breakers,
we did an exercise where each member of the team was broken into a separate group,
and had to write down their views for the book.
We were told to have up to 3 audiences in mind, and 3 take aways someone would have from reading the book.
This allowed people to flesh out their idea of the book without other members of their team present.
The idea behind this exercise was to eliminate the group-think that happens when a group works to shape an idea.
It also allowed us free agents to get an idea of what book people were writing,
and which we might be able to help out with.

Once we all fleshed out our ideas individually,
the groups got back together and talked through what they thought the book should be.
This is the stage where free agents chose their team as well,
so that they could see the vision for the book.

As a project group,
we then chose the audiences and takeaways for the book.
This is the part where I joined the OpenMRS group.
They were writing an introductory book for developers who wanted to get involved in the project,
and I felt I could help out as a developer coming to the project fresh.

We assumed everyone would be new to OpenMRS. We then broke this down into 3 types of things people might be new to:

	Developers new to Health IT

	Developers new to Open Source

	Developers new to Software Development in General

The outcomes we wanted people to come away with were:

	Understand how to become a member of the OpenMRS community

	Be able to get the OpenMRS environment set up

	Feel confident doing development on OpenMRS modules

Tuesday

Table of Contents

On Tuesday we got together in the morning to come up with a table of contents based on our audience and outcomes.
Having the audience and outcomes written down really helped guide and focus the book.
At each step someone could ask “is this really serving our intended audience?”
We only had 2 and a half days to actually write,
so we needed to aggressively trim the content to something that we could accomplish in that time.

Our table of contents ended up looking like:

	
	Introduction

	
	Welcome to OpenMRS!

	
	Saving Lives With Software

	
	The Need for Health IT

	Our Response

	OpenMRS Today

	
	Community

	
	Working Cooperatively

	Collaboration Tools

	
	Technology

	
	Architecture

	Data Model

	Development Process

	Get Set Up

	
	Case Study

	
	Creating your First Module

	
	What’s Next?

	
	Get Involved

	Get Support

	Developer Checklist

Promotion Plan

We also talked through a plan to release the book into the community.
There was an understanding that if you don’t promote the book,
the time spent writing it might go to waste.
Having a way to build momentum for the project in the community would ensure the book continued to live on after this week.

Our original promotion plan looked like:

	Blog post announcing the book on the project blog

	Tell developers in the project about it, so they can recommend it to people

	Add it to all of our beginner documentation

	Talk with existing developers to make sure the information in the book is correct

	Add a JIRA project so we can track issues with the book

	Add a survey so that we can get feedback on the book

	Make sure that updating the book is added to release processes

Compare and Contrast

After coming up with ideas inside our own teams,
we sent a member to each other team to hear what they had come up with.
We were encouraged to steal their ideas if they had something interesting,
and to provide feedback if we saw something missing.
This worked really well at removing group think again,
and making sure that you didn’t have a huge blind spot in your plans.

Start writing

After lunch on Tuesday,
it was time to start writing.
This part was referred to as “content production”,
there was a specific focus on just getting pen to paper.
Editing would come later.
We worked until 8 in the evening,
and then headed back to the hotel.

Around the pool that evening we spent time hanging out and talking about ideas.
In particular I talked to the Mallard team,
comparing and contrasting it to Sphinx.

Wednesday

Content production continued Wednesday.
The goal was to have a complete book by Wednesday night,
and then spend Thursday refining and editing it down.

Thursday

Thursday was spent writing until around lunch,
then the afternoon was spent editing.
We formed groups of 2 or 3 which looked over a section at a time.
Each section had an average of 3 chapters,
and you looked to make sure the flow of all the chapters made sense together.
We would each read a chapter and then talk over each of the issues that we found.

At 6pm on Thursday we called the books done,
and all celebrated.

Friday

On Friday we got together to do a postmortem on the process.
We talked again about the promotion plan,
assigning items to specific people to make sure they got done.

This was all along the theme of continuing momentum forward.
We now had a list of tasks,
with people who were responsible for getting them done.
This made me feel a lot more confident that our work would live on,
and really make a difference in the community.

Take aways

I think the mixing of ideas behind groups was really key to success in this endeavor.
Group think is potent,
and having someone with an outside perspective come in can really reveal your blind spots.

Along these lines,
the evenings hanging out by the pool talking through your work was really important.
You can’t sit and write 24/7,
and having a place to escape and let you ideas breathe really allows you to form them.
I think throughout the week everyone was thinking about their book pretty non-stop,
but were weren’t necessarily writing non-stop.

I come away from this experience with a lot of inspiration and perspective.
Writing a book is something that anyone can do,
with a little help from their friends.

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Announcing Grok the Docs

Are my docs working?

Are folks getting what they need?

I’ve asked myself these questions a lot.
Historically I have put Google Analytics on my doc pages,
and called it good.
I would browse over the data every once in a while,
gleaning basically zero information out of it.

Read the Docs [http://rtfd.org] hosts a lot of documentation,
and I want to help these folks understand how their docs are being used.
So I have been working on a project for the last month called Grok the Docs [https://api.grokthedocs.com].

Grok the Docs [https://api.grokthedocs.com] is a bit different,
with the main difference being it embeds the information in the page for you.
This is interesting because it adds context to the data.
I believe that context is the first step from turning data into information.
The main interface to Grok the Docs are keyboard shortcuts within the documentation page.
So you can access information about the current page you’re on,
while you’re browsing.
Check out the Example below to see it in action.

Surfacing analytic data in the page is great for the maintainer and user alike.
The maintainer can see what parts of their docs are being heavily used,
and which parts aren’t being used as much.
Users can see where other people are ending up,
which is probably where they want to go too.

This is very much just a tech demo currently.
I would love feedback from folks about how I could improve the display of the data.
Currently it’s something that you need to enable [https://api.grokthedocs.com/#try-it-out].

It would be great if you have ideas for other additoinal functionality that could be added.
This is very much an experiment currently,
so I’d love to hear any thoughts you have.
Please email or tweet [http://twitter.com/ericholscher] me if you have feedback or ideas.

Once the code is more baked and solid,
the plan is to turn it on for all Read the Docs users.
After I do a full rollout across Read the Docs,
I’ll consider opening it to other people.
The code is currently closed source,
and will likely remain so.
The idea is that this might become a product that can suppliment my Gittip income.
If it fails as a product,
I will then open source it.
That said,
it will always be free for documentation on Read the Docs.

This project was done as part of my ongoing work to improve documentation.
If you think this work is important,
you should support me on Gittip [http://www.gittip.com/ericholscher].

Example

This shows how user might harness this data.

[image: https://dl.dropboxusercontent.com/u/372293/GTD-Example.gif]

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

A new theme for Read the Docs

We have been hard at work [https://github.com/rtfd/readthedocs.org/pulse/monthly] improving Read the Docs [http://readthedocs.org/] over the past month.
A large amount of back end work has been going on,
and now we have a brand new documentation theme to showcase it.

We have looked at how people use documentation,
and built a beautiful and highly functional new interface for browsing documentation.
We created a solution that looks great and works well.

Creation

Dave Snider [https://twitter.com/enemykite] approached me about a month ago,
interested in helping improve the documentation ecosystem.
We talked about what could improve the Read the Docs experience for the greatest number of our users,
and a new theme seemed like a great place to start.

The New Theme

Full site

The full documentation page is now beautiful and streamlined.
We got rid of the visual clutter and integrated a full-project Table of Contents in the sidebar.
When you go into a specific page,
a page-level contents get embedded in the sidebar as well.
This allows you to keep context inside the documentation when you land on a page from a search.

Old

[image: http://i.imgur.com/hWOnmKy.png]
 [http://i.imgur.com/hWOnmKy.png]

New

[image: http://i.imgur.com/7oLntvR.png]
 [http://i.imgur.com/7oLntvR.png]

Flyout

Read the Docs provides a lot of functionality for documentation projects.
The flyout is the avenue to accessing that functionality.
We need to pack all our functionality into this space.

In the new theme,
the flyout is integrated into the bottom left of the theme.

Old

The old flyout let you:

	Change versions

	Go back to Read the Docs

[image: http://i.imgur.com/CBDPzbD.png]
 [http://i.imgur.com/CBDPzbD.png]

New

The new flyout lets you:

	Change versions

	Go back to Read the Docs

	See the current version

	Show if the current version is out of date

	Download docs for offline viewing

	Contribute edits on GitHub or Bitbucket

	Do a full-text search (Coming soon)

[image: http://i.imgur.com/9DRP8fj.png]
 [http://i.imgur.com/9DRP8fj.png]

Mobile

The new theme really shines on mobile.
We provide a beautiful interface for phones and tablets,
while staying completely functional.

[image: http://i.imgur.com/29uEpVs.png]
 [http://i.imgur.com/29uEpVs.png]

Using it

There are two ways that you can use this theme on Read the Docs.
The first is to simply leave your html_theme variable set to default.
This is now the default Read the Docs theme.
You can also set RTD_NEW_THEME = True in your project’s conf.py,
and we will use our theme when building on Read the Docs no matter what html_theme is set to.

After you change these settings,
simply rebuild your docs and the theme should update.
More information about the theme can be found on the theme documentation page [http://docs.readthedocs.org/en/latest/theme.html]

If you want to continue using the old theme,
simply set RTD_OLD_THEME = True in your conf.py.

Conclusion

This theme is a great addition to the documentation ecosystem.
It is highly functional and beautiful,
allowing users to easily navigate and find what they need.

We have a few more tricks up our sleeves,
but theme is ready to launch today.
Over the next few weeks we’ll be adding a bit more functionality to it,
which should be even more delightful.

I hope that you enjoy using it.
If you have any feedback,
please open an issue [http://github.com/snide/sphinx_rtd_theme/issues] on GitHub for the repo.
To follow announcements for Read the Docs,
follow us on Twitter [http://twitter.com/readthedocs]

If you want to support work like this,
help fund development on Read the Docs [https://www.gittip.com/readthedocs/] on Gittip.

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Why Read the Docs matters

Documenting projects is hard, hosting them shouldn’t be.
Read the Docs [http://readthedocs.org] was created to make
hosting documentation simple. I think that we have solved this
problem well, but now we need to start thinking about the larger
picture.

Along with hosting, Read the Docs was created with 2 other main
goals. One was to encourage people to write documentation, by
removing the barrier of entry of hosting. The other was to create a
central platform for people to find documentation. Having a shared
platform for all documentation allows for innovation at the
platform level, allowing work to be done once and benefit everyone.
Having run the site for over a year now, I think there is a third
thing that we should be striving for. That is to make the quality
of documentation better.

I think that we can help a documentation culture flourish
within the open source world.
Django [https://docs.djangoproject.com/en/1.3/] is a shining
example of what a project with great documentation can do, and it
has a community that values docs more than the norm. I think we can
help
spread this culture throughout the Python world, and beyond.
This has already started, and I want to think about how something
like RTD can help.

What we can do to help

I think that having a guide for writing useful documentation
would be a great step towards helping people along the path of
documentation enlightenment. Jacob Kaplan-Moss has started down
this road with his
blog series [http://jacobian.org/writing/great-documentation/]
and Pycon 2011 talk [http://blip.tv/file/4881071] on this
subject. I think that we could start by collecting these into a
section of the site.

We could build on top of that great start with simple guides for
how to get started with Sphinx, best practices for documentation,
and providing a general place to learn more about how to write good
documentation. Since we host a lot of documentation, we could point
to live examples of techniques, and provide helpers for people to
enable the techniques.

I have started a
reStructedText Philosophy [http://restructuredtext-philosophy.readthedocs.org/en/latest/index.html]
document that is meant to help people understand the ideas behind
how reST works, so that it isn’t as mystifying. This
reST cheatsteet [http://thomas-cokelaer.info/tutorials/sphinx/rest_syntax.html]
also appears to have similar goals. These are a very basic start,
and I think some more along these lines would really help a lot of
people get over the barrier to starting and continuing to write
good documentation.

I think that we could also help create contributors to
projects, if we could find an easy way to provide patches to
documentation. If you could go to the project documentation, and
fix small typos, or help add a paragraph in the tutorial, it would
lower the bar to helping.

However, it isn’t a wiki. These changes would be represented to the
project author as pull requests in their VCS, and they would still
be responsible for tending the garden. This gets rid of the “Just
Edit The Wiki” solution of documentation, and also helps new
contributors get started in an easier fashion.

The Plone community has built a
proof of concept, linking to Github’s edit pages for the current document [http://opensourcehacker.com/2012/01/08/readthedocs-org-github-edit-backlink-and-short-history-of-plone-documentation/].
I think we can integrate this at the platform level, and make it
available to everyone.

Want to help?

Read the Docs is
open source [https://github.com/rtfd/readthedocs.org]. You can
help by writing docs for the site, writing code for the site, or
just writing documentation in general. People can also help just by
using the site, and reporting bugs. Telling us how to make the site
better helps everyone in the long run. Come join us on Freenode in
the #readthedocs channel as well.

Another area that we’re hurting is in the design front. We have
been adding features over time, and the design of the site is
getting a bit strained. Having someone with a good sense of design
help re-think and re-architect some of the features and ideas that
we’ve been working on I think would help a lot.

A lot of the RTD contributors will be at Pycon 2012, where we will
be having a sprint on the site. If you want to get started
contributing, that is a great place to come and get started.

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

The festival that felt like a hug

A story about XOXO Festival [http://xoxofest.com] in 3 acts. I
will start first with something that set the tone, then talk about
the importance to me, and then what I hope comes from it in the
future.

Act 1: Interjecting awesome

One moment stood out to me in the swirl of ideas and amazing that
was XOXO. It was at the beginning of the conference, when the
organizers were on stage. They were talking about how they wanted
the conference to be experienced. The sentence that I think changed
the entire conference experience for me (paraphrased):

This should be a conference where you can go up to a group of
people you don’t know, and they will include you in their
conversation.

This seems like something very simple, but it set an important
social contract. Normally my introverted self will balk at the idea
of joining a group of unknown people. Especially at a conference
with so many people who I look up to and admire. However, this
idea, set forth by the organizers, dispelled this apprehension, and
instead I viewed it as my responsibility to interject.

This was a fundamental change in how I experienced the conference.
I spend most of my time at conferences talking to people I’ve known
for years, rarely breaking into new groups. At XOXO, though, since
I knew only a few people beforehand and felt compelled to meet new
folks, I spent the entire conference striking up conversations with
complete strangers. This was a profoundly different and amazing
experience.

Act 2: Bring out your trolls

Consuming the world through twitter is not a way to be inspired.
Getting together in a room and seeing people who have changed their
world, and the world for others, is an amazing experience. It
allows you to perceive and appreciate people’s aspirations.

I started XOXO in a funk that can only be explained as cynical. I
had heard of Kickstarter and the ilk, but never really invested or
taken the time to fully let the idea wash over me. As the talks
started, and I heard Kickstarter over and over, it at first felt
like a promotion and a buzz word. However, through the genuine
excitement and joy of bringing something new into the world, my
skepticism turned into inspiration.

Greed being destructive was a theme behind the conference, and I
think this is the primary thing that won me over. People were
creating things because they wanted them to exist in the world, and
they had to do it. It wasn’t about making money, or getting famous,
but because they had a drive to change a part of life. This drove
the jealousy and skepticism from my heart, and started the search
for the thing in life that I was meant to change.

Act 3: Radiating change

I think that this conference was an amazing view into a world that
could exist. At a high level it was a distancing from the classical
tech world that is so focused on money. A place where we can be
open, share our ideas, successes, and failures. Somewhere that
people can actually introduce something into the world and have
support for it.

During the talk on Kickstarter,
Yancey [http://www.kickstarter.com/pages/yancey] mentioned that
Portland has been the most successful city on Kickstarter.
Something like $7.5M has been given to creators in the rose city.
On the technical side, we have a burgeoning, but not well formed
start up community. This means that we can form this community into
something that is different than has existed in other places.

As Paul Graham once said,
each city sends you a message [http://www.paulgraham.com/cities.html].
I think that this conference was in some ways a call to action,
that a place like XOXO needs to exist in a more permanent manner. I
think that Portland has a chance of doing this going forward. I
can’t, and won’t, try to spell out how this could be done. I will
say that I can’t imagine another city that is better poised to do
it.

I want Portland to be the place where you come, and think you can
change the world.

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Help fund Read the Docs

Currently Read the Docs [http://readthedocs.org] is funded
mainly through Corporate sponsorship. The Django and Python
Software Foundations (non-profits), Mozilla, Lab305, Revsys, and
others have helped keep the site running. However, this requires
finding sponsors to help donate to the site every 6 months or so to
keep things running.

I want to try out a new idea that is effectively a subscription to
the website. When people pay for something, they expect certain
things. A promise of support, uptime, and other work are basically
being transfered in the mind of the person providing payment. I
know some places try to explicitly denounce this transaction, but
it is still there.

This is where Gittip [http://gittip.com/] comes in. It has the
idea of funding a person to do work through anonymous donations.
The thinking behind this is that the person recieving the money now
has no sense of obligation to the person giving money. This allows
them to take the money and continue to work on Open Source without
feeling pressured to work on the things a specific person giving
them money cares about.

I think this same idea can apply to software projects. Read the
Docs doesn’t cost a huge amount of money to run every month - it
costs a lot less than keeping a person alive and happy. So, I think
that the first success story for Gittip funding something could
easily be a project instead of a person. This funding model would
then allow Read the Docs to support itself over time - without
having to try and get support and investment again.

Read the Docs currently costs about $300/mo to run. This includes 6
servers (2 web, LB, Build, Database, Util/Monitoring), over 350GB
of data transfered, over 100GB of repositories, and it serves over
3 million page views every month. We expect these costs to slowly
rise as we get more and more traffic, but that is the goal we are
currently aiming to hit. Head to the
Read the Docs gittip page [https://www.gittip.com/readthedocs/]
if you want to help out.

This is the beauty of Gittip - when 75 different people are giving
you $4 a month ($1 a week), one can stop giving and it doesn’t
totally destroy the funding. It allows other people to pick up the
slack, and to sustain a dependable revenue stream for the project.

This is an experiment that I am going to try running to see if we
can get individual sponsorship for the project, instead of
depending on corporate sponsors for the sole source of support.
Once this is achieved, we will look at other ways to spend the
sponsorship we get from corporations, perhaps in more traditional
efforts to advance the code base.

If this sounds interesting to you, head over to the
Read the Docs gittip page [https://www.gittip.com/readthedocs/],
and start donating to the project.

Update: Wow! We reached the goal of $75 in around 14 hours.
Thanks everyone who has donated to help keep the site running! It
looks like we might reach above our weekly goal. For now, that
money will just be left in an account to help pay for future growth
of the site. If we end up making way more than we need, we’ll find
something awesome to do with it (CDN?!).

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Interesting projects on Read the Docs: Teaching

As the maintainer of Read the Docs [http://readthedocs.org/], I
spend a lot of time looking through
random projects [http://readthedocs.org/random], and getting
inspired. People have been doing lots of interesting things with
the project, and I’d like to highlight some of them.

This edition is focused on teaching. All of these projects are
trying to teach something, and doing it in different ways. Some are
community contributed guides that have many authors, where some are
a single person trying to distill their experience into something
valuable for others.

The projects mentioned here will be featured on the homepage of
Read the Docs until I do another posting, where those new projects
will take their place.

Little books of R

The
Little Books of R [https://little-books-of-r.readthedocs.org/en/latest/]
were some of the first books that I was aware of on Read the Docs.
They are great little manuals on things that you can do with the
R programming language [http://www.r-project.org/], often used
for modeling and graphics.

There are a few different books, including how to use R with:

	Biomedical Statistics [http://a-little-book-of-r-for-biomedical-statistics.readthedocs.org/]

	Time Series Analysis [http://a-little-book-of-r-for-time-series.readthedocs.org/]

	Multivariate Analysis [http://little-book-of-r-for-multivariate-analysis.readthedocs.org/]

	Bioinformatics [http://a-little-book-of-r-for-bioinformatics.readthedocs.org/]

These books are perfect examples of what publishing online
provides. Short and sweet, to a specific niche, and easily
available.

Ops School

Ops School [https://readthedocs.org/projects/ops-school/] is an
attempt at providing a cirriculum for someone interested in
learning Systems Administration.
It’s answering the question of “What do I need to know to get a junior sysadmin job” that many people have before starting into a career.

It takes a lot of knowledge that takes years to gather from
experience and attempts to distill it down into a form that is
easily referencable. As this project matures, it will provide a
valuable resource for a lot of information around the running of
systems.

The project is still in development, and is
actively seeking contributors [https://ops-school.readthedocs.org/en/latest/introduction.html#how-to-contribute].

The Hitchhiker’s Guide to Python

The
Hitchhiker’s Guide [https://python-guide.readthedocs.org/en/latest/]
is a great project from the Python community. It’s goal is to
provide knowledge on best practices on the daily usage of the
Python language.
It is trying to answer the question “What do I need to know that I don’t know I need to know.”
Known more colloquially as unknown unknown’s, this knowledge is
the hardest to gain. Having a guide from the community about the
things that you should probably know about is invaluable as a new,
or even experienced member of that community.

This project is also in
active development [https://github.com/kennethreitz/python-guide].

Thoughts on RESTful API Design

These thoughts [https://restful-api-design.readthedocs.org/en/latest/]
are a great collection of experience from someone who has built
production REST APIs. If you are tasked with creating an API for a
web site, it’s a great read.
It provides a good framework for understanding how the API fits in with the rest of the application, as well as what makes a good API.

Conclusion

I love the idea of Read the Docs as a medium of teaching, as well
as just documenting software projects.
Please let me know of other interesting projects that you’ve found, and I can include them.
Raising awareness of these great resources is valuable, and
hopefully it will reach more people who can learn from them.

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

2012 Year in Review

Wow, what a year. 2012 was a great year in my book. I took 2012 off
from a lot of the professional development activies that have taken
up my adult life thus far, and really focused on personal
development. I think I did a great job with that, and I have a
pretty awesome list of things I accomplished this year. I think I
also started to get the full enjoyment out of Oregon this year, in
all its seasons.

Physical achievements

The biggest achievement of the year has to be the Petal Pedal I did
in June. That’s a
100 mile bike ride [http://petalpedal.com/2011/09/the-century/]
through the Willamette Valley in Oregon. I trained for it through
most of the spring with rides that started out around 20 miles and
ended up in around 70-80 miles. Previously the longest bike ride I
had done was probably around 10 miles. The official ride also had
5000 ft of eleveation gain, which added another element of
difficultly. The ride was beautiful though, and went through a
bunch of flower fields and Silver Falls State Park.

Earlier in 2012, I also started taking up skiing again. I went up
to Ski Bowl [http://www.skibowl.com/winter/] for night skiing a
bunch. I went ahead and bought a season pass for Ski Bowl for the
2013 season.

As summer came to Portland, I was outside pretty much all the time.
It was a most excellent summer weather-wise and I took full
advantage of it. I did a bunch of backpacking up on Mount Hood,
with a number of weekend trips to various places including Carin
Basin and Paradise Park. I also went car camping a bunch, including
at Rock Creek in the Santiam State Forest, and Trillium Lake on
Hood. I also stayed in a Yurt on the Oregon Coast for the first
time at Cape Lookout.

The summer also included a couple fun road trips. I got down to see
Crater Lake, the only national park in Oregon. We camped there for
a night and drove around the rim. It is one of the most amazing
places I have ever been. It’s a crystal clear blue lake, but it’s
in the rim of an extinct volcanoe, at around 5000 ft elevation.
It’s a really amazing geological place and highly recommended.
After that, we drove up to Bend, and camped at Lava Lake, which is
also a beautiful place. We saw tons of ground squirrels and other
wildlife there. We also went through Bend and walked around, and
checked out Smith Rock. The trip concluded with a sunset walk up to
Mirror Lake on hood, and a race against the sun to get back to the
car.

I made it back home for 2 of my good college friends getting
married (to each other) in DC and visited family in Virginia. I got
some surfing in down in Virginia Beach, which was great. It’s
something I miss about Oregon, because the water is so cold here.
Made it out to the Oregon Coast, but it’s mainly just good for
looking instead of swimming in.

The summer also included some awesome hikes and other activities. I
went out to Hood River a couple times, and actually Wind Surfed and
Paddle Boarded for the first time. We also drove around the east
side of Hood to the Fruit Loop and gorged on cherries and other
delicious fruit. Speaking of fruit, I ate a ton of berries again
this year, with Oregon having some of the finest summer farmers
markets in all the land.

Hiking was a big draw this year. I went on a number of hikes
including the PCT from Timberline Lodge all the way to Cairn Basin
on a couple different days. Eagle Creek, Angel’s Rest, Dog
Mountain, and a few more in the Columbia River Gorge. I hiked the
Wildwood trail through Forest Park a number of times, however I
didn’t thru-hike it’s 30 miles, will have to save that for next
year.

As fall came around, things started to slow down. I still did a
bunch of hiking through the fall, and riding my bike. I started
rock climbing around this time to keep up the activity level, and
have been progressing nicely at indoor climbing at the Portland
Rock Gym. I can’t wait to test my skills outside, but I already
noticed my balance and confidence improving on the hikes I did in
the fall.

As winter came into view, I escaped down to the Turks & Caicos
islands for Christmas. Where I did 7 dives, got my Advanced Open
Water cert, and did a bunch more snorkeling. It was great hanging
out with my family in the warmth, and spending time in the water.
When I got back, I went on my first snowshoeing adventure ever on
Hood. I really like snowshoeing, it’s basically just like hiking in
the snow, just it takes a lot more work!

This year was also full of Ping Pong. We have a table at work, and
it’s rekindled my love of the game. I played some when I was a kid,
but we have gotten pretty good and serious at work, and it’s been a
pleasure upping my skills again.

In list form

A list of firsts for the year:

	Rock Climbing

	Backpacking

	Wind Surfing

	Paddle Boarding

	Snow Shoeing

	Long Distance Biking

Things that I love that I did more of this year:

	Ping Pong

	Hiking

	Camping

	Skiing

	Diving

	Snorkeling

	Biking

Things I love that I didn’t do so much of:

	Surfing

	Traveling

	Soccer

	Frisbee

New things I want to try next year:

	Bike Camping

	Longer backpacking trips

	Climbing outside

	Climbing Mount Hood and/or St Helens

	Thru hiking Forest Park

	White Water Rafting

	Kayaking

Conclusion

I’m sure I missed some stuff, but it was a year full of firsts, and
I think I have gotten the most out of Oregon that I could. I chose
to focus on my personal life this year instead of my professional
life, and I think it’s worked out for the best. I have had an
amazing year full of excellent activies outdoors.

I also saw a bunch of music this year, and met a bunch of awesome
new people, and did a bunch of great things professionally, but I
think the points worth remembering will be the parts above.

As a wise man once said: Work to Live, Don’t Live to work.

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Handling Django Settings Files

I have seen a lot of talk over the past couple years about how to
handle different settings files and databases, synced between
production and development. I have happened onto a way of doing it
that makes me happy, and figured I would share it with the world.

File structure

I use a file structure that looks like this:

project/
 settings/
 __init__.py (empty)
 base.py
 sqlite.py
 postgres.py

The base.py contains all of the configuration options that are
shared among the databases. INSTALLED_APPS, etc. All of the
DATABASE settings should be specified in the more-specific files.
As well as things that differ by environment, like remote servers,
cache settings, cookie domains, and other things.

This allows you to run the sqlite settings file, and have it be set
to localhost, or whatever your development settings are. Then in
production you just run against the postgres settings.

A good example of this being used in practice is on
Read the Docs [https://github.com/rtfd/readthedocs.org/tree/master/settings].

But wait, there’s more!

manage.py for dev

./manage.py is great for development. It is the easiest way to get
started, and it automatically sets up your paths and stuff. With my
setup, I actually
explicitly set [https://github.com/rtfd/readthedocs.org/blob/master/manage.py#L3]
manage.py’s settings file to the sqlite file.

This means that whenever you are using manage.py, you are in a
development context. So, what do you do about production?

django-admin.py is for production

In production, you set your DJANGO_SETTINGS_MODULE to the
postgres settings file. So whenever you use django-admin.py, you
will be running against the production database.

I really like this scheme, because it gives you a logical distinction between production and development in your code, and in your interface on the CLI.
When you are developing, you are using manage.py and editing the
sqlite settings file. The reverse for production.

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Read the Docs Updates

Documentation writing will always be hard work. It’s a much
different mind-set than programming, and people that write good
code might not necessarily write good docs. However, this is a
known issue, and something that can’t really be solved.

What you can do is make it easier to write documentation. Every
step along the way that you can give yourself an excuse to not
write documentation is another undocumented open source project.

Luke Plant has a
great post [http://lukeplant.me.uk/blog/posts/docs-or-it-doesnt-exist/]
up about how important documentation is, and I completely agree. I
imagine a lot of the people using Django are using it because of
the documentation. I think as members of the Django community, we
need to build a culture of documentation within the greater Python
world. Python does tend to have better documentation than a lot of
languages, but it’s still not nearly what it could be.

Read the Docs [http://readthedocs.org] exists to make it easier
to host your Sphinx documentation. Over the weekend,
Bobby [http://bobbygrace.info/],
Jonas [https://github.com/ojii], and I added a bunch of new
features to the site. I think it’s getting to the point where there
isn’t an easier or better way to host the documentation for your
Django project, and we’re only going to keep improving it!

A different
Eric [http://www.automation-excellence.com/team/eric-pierce]
added a really nice
Getting Started [http://readthedocs.org/docs/read-the-docs/latest/getting_started.html]
guide for RTD, that shows how easy it is to get your projects
hosted with us.

Anyway, on to the new features that we added.

New Features

Versions

Versions of projects are easily one of the biggest requested
features on the site. For a long time we just supported building
the latest versions of your documentation. Now we support versions
of your documentation that are tagged in your VCS (hg/git only).

A lot of larger projects need versioning because they support one
or two versions, as well as developing in the trunk. Django was the
main project we were thinking of, but some other projects have put
this to good use. A couple of examples are:

	Django’s latest stable build [http://readthedocs.org/docs/django/1.2.4/]

	Fabric 0.9.3 [http://readthedocs.org/docs/fabric/0.9.3/],

	django-admin-tools’s awesome integration [http://django-admin-tools.readthedocs.org/]
that has all it’s versions hosted with us.

PDF Support

Sphinx has interesting support for PDF generation through Latex. In
my testing it was pretty unreliable, but I was able to rangle it
into working well enough to expose in the UI. So now almost every
project will have a “Download PDF” button. This code has version
support as well, so we can offer PDFs of certain versions.

	Django’s trunk documentation PDF [http://media.readthedocs.org/pdf/django/latest/django.pdf]

	Django CMS 2.1.0-rc2 PDF [http://media.readthedocs.org/pdf/django-cms/2.1.0.rc2/django-cms.pdf]

	Varnish trunk PDF [http://media.readthedocs.org/pdf/varnish/latest/varnish.pdf]

Another interesting part of this feature is that this building code
has been abstracted out, so we can support epub, plain text, and
all the other Sphinx output formats that people want.

Badges on the project pages

We killed the RTD header on hosted documentation pages in favor of
a Badge in the lower right hand corner. The header clashed with a
lot of the themes, and the badge is nice because it gives us a
place to put functionality that is always visible, but is obviously
not part of the hosted documentation. We want to build some more
functionality into the badge, like switching between versions and
linking back to the project’s RTD page, once we build a good UI for
it.

Sponsorship

Revsys [http://www.revsys.com/] has agreed to sponsor the
hosting costs for RTD. Jacob Kaplan-Moss has always been a big
proponent of documentation, and I’m glad that he and Frank Wiles
are helping us keep Read the Docs around and get better. We tried
to make the sponsorship subtle and not intrusive, so please let me
know if it bothers you and we can try and figure something out.

Conclusion

I think that these features are really starting to make RTD a
compelling platform for hosting your documentation. We are planning
more awesome features that will make RTD even better. I’m really
excited about the project and I hope that you either host your docs
with us, or find docs that we host useful.

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Using Reviewboard with Git

Reviewboard [http://www.reviewboard.org/] is a great tool for
managing the process of Code Reviews. It has pretty good git
support, but it might not be obvious what the best way is to use
it. At work, I have a couple of different ways of pushing up code
for reviews, which I’ll talk about.

This guide is assuming you are using your own bare repositories, on
the server hosting the Reviewboard instance. It’s mainly here so
that I can remember how to do this next time I need to. Also,
thanks to Travis Cline [http://traviscline.com/blog/] for the
initial pointers for this post.

Setting up Reviewboard

Once you have Reviewboard installed, you need to add a Repository
in the admin, which is located at
/admin/db/scmtools/repository/. The required fields have the
following values:

	Name: The name of the project

	Hosting service: Custom

	Repository type: Git

	Path: The path to the local checkout of the git repository (ex.
/var/lib/git/name)

	Mirror Path: The Url to the repository (ex.
ssh://git@your.server.com/var/lib/git/name)

The
Repository Documentation [http://www.reviewboard.org/docs/manual/dev/admin/management/repositories/#git]
has more about why you need this screwy configuration.

post Review

Before we get started, you’re going to want to get the
post-review [http://www.reviewboard.org/docs/manual/dev/users/tools/post-review/]
tool that works along with Reviewboard. The easiest way to get it
is to pip install RBTools.

Pointing to the right Reviewboard Instance

The easiest way to make sure your pointing at the right Reviewboard
instance is the .reviewboardrc file in your home directory. You
only need to add one line to that file, which is:

REVIEWBOARD_URL = "https://path.to.your.instance"

If you are working with multiple instances that map to different
repos, you can set the Reviewboard instance for the specific repo
as well:

git config reviewboard.url https://path.to.your.instance

Reviewing a Branch

Alright, now you are all setup to start posting reviews. The
easiest way to do that is to branch off of master, and start
committing. If you are following something similar to
this awesome branching model [http://nvie.com/posts/a-successful-git-branching-model/],
this should be your normal workflow. Once your branch is ready to
be merged back into your project, you want to get it reviewed. You
can send a review equivalent to “this branch diffed against master”
like so:

post-review --guess-summary --guess-description

Reviewing one commit

Another thing I find myself doing a lot is working on my master,
and only having one commit to review. In theory this should
probably be done on a bugfix branch, but such is life. There are
other good use cases for only reviewing the latest commit as well.
It’s done like so:

post-review --guess-summary --guess-description --parent=HEAD^

Reviewing arbitrary number of commits

It’s also possible to review any number of previous commits. It
looks a lot like the previous command:

post-review -o --guess-summary --guess-description --parent=HEAD~4 #To review last 4 commits.

If you are familiar with git, you will understand that there is a
lot more that you can do with the –parent argument. I’ll leave the
possibilities up to your imagination.

Other useful post-review flags

The are a couple of other useful post-review flags, that I use from
time to time.

	-d This basically outputs all of the git commands that
post-review is using to generate the diffs. It’s a great way to
figure out what’s going wrong when it can’t find a diff.

	-o: This opens a web browser to the posted review once it’s
done. Great for easily making the review public.

I hope this makes it a little easier for you to set up a git
repository with reviewboard.

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Read the Docs Update

It’s been a while since I last talked about
Read the Docs [http://readthedocs.org], and there has been a lot
of activity. This is an update on the latest and greatest new
features.

PSF Funding

The biggest news that has happened is that we have been given a
grant from the Python Software Foundation to help host the site.
Thanks PSF! They have
blogged about it [http://pyfound.blogspot.com/2011/03/psf-funds-readthedocsorg.html],
and I am grateful that they have given us support. With the funds
they have offered, we have been able to make Read the Docs a lot
faster, and more robust. I will outline some of the changes below.

This also means we won’t be going away any time soon!

New Theme

We have a fancy
new theme [http://read-the-docs.readthedocs.org/en/latest/getting_started.html]
for documentation on Read the Docs! If you have the ‘default’ theme
for your project, it will show up on the build of your docs on the
site. I think it is pretty great, thanks to the designers who spent
their time making it awesome. A really great feature is that the
new theme is mobile ready. Go ahead and view a project using it
on your phone, or make your browser smaller and you will see the
fanciness. Having a custom theme will give us a base to build lots
of other neat features on top of.

Better architecture

We had some connectivity trouble in between our servers a while
back, and this prompted me to make the site respond better to these
conditions. Every time you view documentation on a subdomain of
readthedocs.org, your request will never hit Django. So all of
these requests will work without a database. We have also added a
second application server with a load balance in front, which means
that one of the app servers could go away and your documentation
would still get served.

That leaves our load balancer as the main single point of failure
at the moment. We’re using Varnish for the load balancer, and we’ve
implemented strong caching of data. Varnish will cache your docs
for up to a week, and it will be actively purged when you rebuild
your docs. This means that your docs will usually be served out of
memory, and without dependence on any other server but that one. We
have plans to elininate Varnish as a single POF, and then it would
only be our hosting provider that would be a single point of
failure (famous last words).

Intersphinx support

Intersphinx [http://sphinx.readthedocs.org/en/latest/ext/intersphinx.html#sphinx.ext.intersphinx]
is an awesome feature of Sphinx that allows you to reference remote
sphinx documentation easily.
RTD now supports it [http://read-the-docs.readthedocs.org/en/latest/features.html#intersphinx-support]
for every project that we host.

Improved rtfd.org

I’ve always had big ideas for rtfd.org, since it can act as a
short-url for things. projectname.rtfd.org has always redirects
to the projects docs, but now we have something a lot better.
Inspired by Jacob Kaplan-Moss and his work on django.me, we now
support human-edited deep-linking within documentation hosted on
RTD.

Taking another page from Jacob’s book, we seeded the index of our
projects with their Intersphinx data, so a lot of references will
automatically work. This works best with API reference docs, but
anything people have put links to in their documentation should
have been picked up. A couple of examples:

	http://pip.rtfd.org/git

	http://celery.rtfd.org/Task

	http://sqlalchemy.rtfd.org/relationship

If you go to a non-existent link on rtfd.org, you will be prompted
to enter a suggested URL. This will help build the data, and make
it more useful for everyone.

rtd [https://github.com/ericholscher/rtd] command line utility

RTD has had an
API [http://read-the-docs.readthedocs.org/en/latest/api.html]
for a while now, and with the addition of the support for rtfd.org,
I thought it would be neat to make it easier to access docs from
the command line. With a simple pip install rtd, you will get
an rtd utility that will open docs on RTD. It supports 2 arguments,
the first being a project name, and the second being a slug to
append for the rtfd.org functionality. So like the example above:

-> rtd pip
Pip Installs Packages.
Opening browser to http://pip.rtfd.org/
-> rtd celery Task
Distributed task queue
Opening browser to http://celery.rtfd.org/Task

It hits the RTD API to see if the project is on the site, and only
opens your browser if it doesn’t exist. I hope that in the future
we’ll make it easy to upload a project from the shell, and more.

More docs

Since we are a documentation site, we’ve always had documentation.
I’ve been adding more as time has gone on, and most of the features
I’ll be talking about today are
already documented [http://read-the-docs.readthedocs.org/en/latest/features.html].
I also broke the documentation up into sections for users of the
site, and developers on the codebase, so it should be easier to
find for everyone to find what they are looking for.

Conclusion

I think that RTD can be doing a lot more to help out the community
with regards to documentation. I’ll write another post about that
soon. But if you are interested in helping out with the effort, all
of the code is
open source [https://github.com/rtfd/readthedocs.org] and we
love people to contribute. Feel free to jump in #readthedocs on
Freenode as well, if you have any questions or thoughts.

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

A simple Perl IRCBot

A couple things I want to talk about. First of all, I will be
participating in project52 [http://project52.info/]; which is a
competetion to write a blog post in every week of the year. The
last 2 years I have done the november post-a-day, and gotten about
25 of the 30 required posts. So hopefully writing twice that number
of posts in 12 times the amount of time will be easy, right?
Anyways, this is the first post in that series, so stay tuned for
more regular and hopefully useful content :)

And since I don’t like posting just basic updates, here is some
perl code that I just recently dug up.

The code

I was thinking about adding IRC integration to a side project that
I have been working on lately. I remembered that I had written
something similar while in high school, and I’ve decided to throw
that code up online, and clean it up a little bit. I don’t really
expect anyone to use it, but I think it’s pretty neat, considering
I wrote it 6 years ago.

The code is up
over at github [http://github.com/ericholscher/Masonry] with
basic installation instructions. It comes with a client in perl and
python.

The idea is that the IRCBot has a basic TCP server in it, that you
can use to send it messages across a network. So you can send a
message crafted in the form of
password&server&channel&my sweet message, and the bot will
display it on the correct channel.

It uses POE [http://poe.perl.org/], which I believe is perl’s
analogous idea to Twisted. I assume something like this is possible
for Python, but I figured since it was already written, I should go
ahead and use and release it.

The story

So the reason that this code exists is because I was a huge nerd in
high school. I went to a computer class in the afternoons, where we
each had our own computers, but the networks were locked down. This
was in a time before I was good enough at SSH Tunneling, so I went
ahead and wrote this code as a way to use HTTP to get into IRC.

The code released was half of it, it would site on IRC, and log all
activity into a Mysql database. It also had a TCP server built in,
so that I could ping it from another process/server and send
messages out to other channels.

The second half was a basic web interface, which would pull and
display all of the logs from the Mysql DB. It was broken down by
channel, giving historical logs of each. It also had a firehose
display that showed all incoming messages and what channel/server
they were from. Along with this there was a form that hit a CGI
script that sent a TCP request across to the client process and
sent messages into the IRC channels. This allowed me to have two
way communication into IRC from my web browser.

I happily used this to chat with people on IRC for my last year in
high school. :)

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Django Inspect: A generic introspection API for Django models

Django itself has shipped with a “semi-private” introspection API,
_meta, for a long time. I have created a drop-dead simple
wrapper on top of this.

The value of introspection keeps growing on me as I realize how it
makes making truly reusable applications possible. It is an
interesting intersection of duck-typing and interfaces. Basically,
you can create functionality that will work with
any Django model, as long as it has the correct values on
them.

However, I present this as a very useful proof of concept, and I
think a lot can be done with these ideas to improve on them. I
recommend you just pull down the code and play with it. The ideas
are very simple, but the power it gives you is vast.

The code is on
Github [http://github.com/ericholscher/django_inspect] with a
very simple test suite showing usage.

What does it do?

The API is very simple. You pass in a instance of a Django model,
and you can get off the values that you care about.

from django_inspect import base
intro = base.Inspecter(comment)
self.assertEqual(intro.content.field, 'comment')
self.assertEqual(intro.content.value, 'First here, too!')

This example is using a Django comment, as you can see. When you
get a comment object, you want to see what the actual “content” of
it is. Normally, this requires special casing in your code, or
somewhere else. However, here we see it’s just
intro.content.value, to get the value, or .field to get the
name of the content field.

The idea is that you have pluggable “parsers” that have names,
which then map to fields on the model. By default, the name of the
parser is checked, and any mappings you have passed in. Then it
will go ahead and execute any custom logic that is associated with
that parser.

So for this example, the “content parser” knows about comments, so
it knows to check for the “comment” field for it’s main content.
This lets this mapping of content to fields to live inside the
parser, and lets the user of the Inspecter to just say “I want the
content”.

Again, it’s just easier if you
read the code [http://github.com/ericholscher/django_inspect/blob/master/django_inspect/base.py#L42],
it’s really pretty simple.

Handling third party apps

Django Inspect also has the concept of mapping models to fields. So
you can create a simple dictionary and pass it into your
Introspection class, and it will map those keys to the
corresponding fields. An example is worth a thousand words:

DEFAULT_MAPPINGS = {
'comments.comment': {
 'content': 'comment',
 'pub_date': 'submit_date',
 }
}

I call this the “Mingus use case”. For example, if
Mingus [http://github.com/montylounge/django-mingus] wanted to
be able to introspect any of it’s reusable apps for what it’s
“pub_date” or “content” fields were, it could ship with a mapping
for all of the reusable app models, and then you would be able to
write generic code that would work across all of those apps.

This is partially inspired by South’s support for
app migration directories [http://south.aeracode.org/wiki/Settings#SOUTH_MIGRATION_MODULES0.7andhigher]

A complex example

Say I am using Nathan Borror’s Fantastic
Basic Blog [http://github.com/nathanborror/django-basic-apps/blob/master/basic/blog/models.py#L33].
It has it’s Blog Post model defined as such:

class Post(models.Model):
 STATUS_CHOICES = (
 (1, _('Draft')),
 (2, _('Public')),
)
 title = models.CharField(_('title'), max_length=200)
 slug = models.SlugField(_('slug'), unique_for_date='publish')
 author = models.ForeignKey(User, blank=True, null=True)
 body = models.TextField(_('body'),)
 tease = models.TextField(_('tease'), blank=True, help_text=_('Concise text suggested. Does not appear in RSS feed.'))
 status = models.IntegerField(_('status'), choices=STATUS_CHOICES, default=2)
 allow_comments = models.BooleanField(_('allow comments'), default=True)
 publish = models.DateTimeField(_('publish'), default=datetime.datetime.now)
 created = models.DateTimeField(_('created'), auto_now_add=True)
 modified = models.DateTimeField(_('modified'), auto_now=True)
 categories = models.ManyToManyField(Category, blank=True)
 tags = TagField()
 objects = PublicManager()

When I go ahead and create an inspecter class for this, I will be
able to define what fields I want to map onto what. So for example,
here the ‘content’ field of the blog post is actually called
“body”. I could create a simple mapping for this model, or I could
modify the default parser to make the “content” field look for
“body” models.

BLOG_MAPPING = {
'blog.post': {
 'content': 'body',
 'pub_date': 'publish',
 }
}

from django_inspect import base
ins = base.Inspecter(post, BLOG_MAPPING)

Now the following fields should have the following values:

ins.content.field: 'body'
ins.content.value: <Whatever my blog post is about>
ins.pub_date.field: 'publish'
ins.pub_date.value: <When my blog post was published>

Lots of room for improvement

There are a lot of interesting API niceities that could be added in
on top of this code. I want to keep it really simple, however there
is room for improvement. A couple that I have thought of:

	Expose this as a Proxy Model, where you would get a proxy model
of your model with the introspection bits attached onto it.

	Make a descriptor so that you can have a pass through values do
magical things on the Parsers

	Allow for complex parsers by having the parsers know about each
other

	Make the Inspecter class know more about the parsers and be able
to do more interesting things there

	Ship it with a default set of mapping that work for most
reusable apps out there. Also have a “standard” way for apps to
define mappings.

	Lots more

The whole idea of releasing this is to get feedback on what the
actual API should look like. I think it’s pretty awesome currently
for the simple case, but for more advanced use, it’s going to need
to grow some features.

Conclusion

The whole idea behind this is that if your code is named or modeled
sanely, it should “Just Work”. However, if you have a crazy data
model, or have to depend on wonky third party apps outside your
control, it is incredibly simple to map and introspect those models
as well.

The other powerful idea is the application of semantics to models.
I can query your model for the “content” or “tease” field, and be
able to define exactly what that is. This lets me build interfaces
and applications that “know” more about their data, even when that
data is unknown at the time of writing.

This gives the application developer the power to write truly
generic applications that will work with any suitable model. At
least I hope so :). I have some other ideas that fall out from the
implications of this introspection code that I will be talking
about at Pycon, and probably doing a lightning talk. So feel free
to find me and I probably won’t shut up about it.

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Large Problems in Django, Mostly Solved: Documentation

* [This is part of the `Large Problems in Django Series <http://ericholscher.com/tag/largeproblems/>`_, see previous entries about: `APIs <http://ericholscher.com/blog/2009/nov/11/large-problems-django-mostly-solved-rest-api/>`_, `Search <http://ericholscher.com/blog/2009/nov/2/large-problems-django-mostly-solved/>`_, and `Database Migrations <http://ericholscher.com/blog/2009/nov/6/large-problems-database-migrations/>`_]*

Django is well known across the open source community for it’s
stellar documentation. While the tech behind the documentation
plays only a little role in how good it is, the tools behind both
Python and Django’s documentation is
Sphinx [http://sphinx.pocoo.org/index.html]. Luckily, we can all
use Sphinx to document our projects, and I’d like to talk a little
about why you might want to.

Why use Sphinx

Network Effects

One of the big reasons is because it is becoming the standard
documentation tool in the Python community. Once your projects
documentation is in Sphinx, most everyone will know how to
contribute to it. You will also be able to contribute to other
projects easily as well. You can look through the
Python [http://code.python.org/hg/trunk/file/99eac34f25bb/Doc/]
and
Django [http://code.djangoproject.com/browser/django/trunk/docs]
docs for examples of how to do neat things, and it is really the
best solution to the problem.

It uses Restructured Text

If you are writing plain text about python, more than likely you
should be using
Restructured Text [http://sphinx.pocoo.org/rest.html]. All
docstrings are parsed for it, and you only need to learn this one
markup language for all of your plain text needs. It even works
great for blog posts, with most Django blogging engines supporting
it. It is also easy to extend, and is generally a useful thing to
know how to do.

Write once, compile to HTML, PDF, etc.

By writing in Restructured Text, you write your documentation with
metadata about what all of your text means. This then allows it to
be transformed intelligently into other formats. This is how Django
can provide HTML and PDF versions of the documentation all from the
same source format. By rendering through LaTeX, you are given a
large amount of flexibility in the style of your PDF output,
allowing for really nice designs with a little effort.

Your docs are beautiful

Sphinx has native support through
Pygments [http://pygments.org/] for syntax highlighting most
languages that exist. It also ships with support for themes, with
the community
providing [http://github.com/bartTC/sphinx-schemes]
themes [http://github.com/coordt/ADCtheme] out of the box to
make your documentation look great. This is another place where
having a critical mass of people behind the project makes your docs
better.

Cross References

With simple markup rules applied to your documentation, you get
indexes and cross referencing for free. This makes your
documentation much more discoverable, and useful for people who are
browsing it. The Django documentation makes
extensive use [http://docs.djangoproject.com/en/dev/topics/testing/#id1]
of this, making it easy to jump to the definition of a setting
where ever it is referenced for example.

Lots and lots more.

Please just go look at Sphinx, and read a little more about it. The
Overview [http://sphinx.pocoo.org/contents.html] at the Sphinx
page gives you a nice example of actual Sphinx docs, and points to
lots of little tidbits of information. Sphinx has made documenting
your project a real joy, and I can’t recommend it enough.

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

The role of designers in the Django community

* UPDATE*: There is a new thread about the
roles and implementation of a Design Czar [http://groups.google.com/group/django-developers/browse_thread/thread/18bca037f10769e9]
up on the Django Developers mailing list. Please contribute there
as well, if you have thoughts and ideas.

There has been a
recent discussion [http://groups.google.com/group/django-developers/browse_thread/thread/ca4f26d616921753]
on the
Django Developers [http://groups.google.com/group/django-developers/]
mailing list about the role of designers in the Django community. I
think that this is an interesting discussion that can come from
this, and I would like to explain my thoughts on the issue.

This discussion came up in the context of redesigning the Django
Admin, which everyone knows and loves. The UI is growing a bit
out-dated, and there was talk of working to clean it up. This then
turned into a discussion about how design proposals and
improvements aren’t taken as seriously as they should be by the
community. I think there are a number of reasons that this happens,
and I would like to take a look at them. My purpose here is to
start a discussion about how to better integrate designers into the
community, because they are a vital part of making our world more
beautiful and efficient.

I don’t trust myself to judge your work

The normal process for changes that go into Django is that a
proposal is sent to the mailing list. There is a discussion that
happens around them, and then if the code is produced, and it
works, it gets committed. For design changes, I don’t reply to
these messages, because I don’t have the skills or knowledge to
judge the work. I think that a lot of people on these lists are in
the same boat.

When someone sends a proposal to the list, and it doesn’t get any
replies, that feels like rejection. This happens more than it
should, but it isn’t anyones job to respond to these messages and
say “sorry, I’m not qualified to critique your work”. This happens
with code proposals too, but I think it may happen more with
design. This leads to designers forsaking the mailing list, and
this problem perpetuates itself, by not drawing designers into the
community.

Design is not special, except when it is

Part of the problem that seems to have come forward is that there
is a feeling that design is “special”. That it should be treated
somehow differently in the process. As we know from history, even
with all good intentions, different is never equal. So I think that
we should work to fit design into the current scheme of how things
work, instead of trying to adopt new ways of dealing with it.

When I look at the current Core Developers of Django, I don’t see
many people who are designers. As I said above, that fact that very
few of the current core developers are well versed in the design
realm, really hurts inclusion of design changes. This creates a lot
more friction in the process of getting design changes into the
code base.

I don’t know if this idea is crazy, but should we have the concept
of a “core designer”. These would be people that the community
trusts and knows have good taste, that would be an obvious person
to make these design choices. I think that there is a problem when
I have a design change for Django, and I really don’t know who to
talk to. There is an obvious authority (BDFL) for code changes, but
I don’t know if Adrian and Jacob are really the correct people to
making these judgment calls on design?

I realize that this is open source, and “core designers” would be
the same as developers, just people who care about the direction of
the projects design. However, I think that having more design
oriented people in the community in a more direct fashion would
make it more obvious that design changes are welcomed and seriously
considered.

I don’t know how far we need to go down the path of making this
explicit. However, most of the documentation about contributing is
explicit about “code”. This is another of those lines, where I
don’t know if it makes sense to be explicit about design, having a
“design” section in the contributing documentation, or if the
implicit knowledge of core designers will make it obvious that we
mean design changes there too.

The actual process

I don’t want to talk about the actual design process, because well,
I really don’t know how it works. I think that once we integrate
designers into the community better, the process for design will
naturally fall out better.

Conclusion

I would like to point out that Django has some of the best
designers of any open source community out there. I am lucky to
work with a number of them on a daily basis, and I really think
that they make our community special. So thank you guys for
sticking with us.

This is a place where I could see Django leading the way in how to
integrate design into the open source development process. Let’s
make a grand experiment, and see how it works out.

If you have thoughts, please join
the discussion [http://groups.google.com/group/django-developers/browse_thread/thread/ca4f26d616921753]
on
Django Developers [http://groups.google.com/group/django-developers/],
so that the correct people hear your thoughts.

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Large Problems in Django, Mostly Solved: Delayed Execution

[This is part of the
Large Problems in Django Series [http://ericholscher.com/tag/largeproblems/],
see previous entries about:
Documentation [http://ericholscher.com/blog/2010/feb/5/large-problems-django-mostly-solved-documentation/],
APIs [http://ericholscher.com/blog/2009/nov/11/large-problems-django-mostly-solved-rest-api/],
Search [http://ericholscher.com/blog/2009/nov/2/large-problems-django-mostly-solved/],
and
Database Migrations [http://ericholscher.com/blog/2009/nov/6/large-problems-database-migrations/]]

A lot of Django applications have tasks that they need to perform
out of process. When you are executing a web request, if you try to
do all the work that you need before returning to the user, your
site will be increasingly slow. The answer to this problem is to
fire off a request to do those tasks, while returning to the user
in a reasonable amount of time.
Celery [http://celeryproject.org/] refers to itself as a
“Distributed Task Queue”, and is the current best of breed in the
Python realm.

Why Use Celery

Easy

For the most basic functionality, all you need to do is:

	move your function into your tasks.py

	wrap it with a
@task [http://celeryproject.org/docs/userguide/tasks.html#module-celery.task.base]
decorator

	call it with task.delay(*args) just like before.

Now, your task is magically running out of process and you can get
on with whatever it is your code is meant to be doing.

Network Effects

This is currently the best and most complete application in Python
that does these things. A lot of people are using it, which means
that features will be added consistently. There is also pretty good
support in the #celery IRC channel, which usually has around 40-50
people in it. It is being actively developed and all other things
being equal, using a tool with a community around it is much
better.

Concurrency

The celeryd daemon supports multiprocessing, which allows it to run
multiple tasks at once. You can get “cheap concurrency” this way,
by loading it up with tasks and having it execute them. You can
also run multiple instances of celeryd across multiple servers, you
can get your tasks that run concurrently across servers. Running
multiple instances is also a good way of insuring redundancy in
case one of your daemons goes down.

Monitoring

One of the scary things about having remote execution of tasks is
that if your daemon goes away, your site will appear not to
function. Celery has an accompanying project called
celerymon [http://github.com/ask/celerymon] which provides
monitoring services for Celery.

No more hacky cron jobs

I don’t know about you, but most of the time when I want something
to be run in the background, cron is my go to choice. I’m ashamed
to admit that I’ve written code that is meant to run in a cron job
every minute checking for something to have happened. However,
celery has most of the features that cron has, while giving you
real support for deamonizing and delaying tasks. Being able to
retry tasks is a great benefit is has over cron, so when something
fails, you can run it again later.

Great documentation

The celery docs [http://celeryproject.org/docs/index.html] are
great, including everything from basic setup and example
instructions to howtos. We put it into production at work, and the
docs for using redis [http://celeryproject.org/docs/tutorials/otherqueues.html]
as a “ghetto queue” were great and worked the first try.

Lots more

I highly recommend that you check out celery. Unless you are doing
a small website like a blog, you more than likely have a use case
for Delayed execution of tasks.
It’s one of those things that once you have celery set up and running, you find more and more ways to use it over time. It is one of the best ways to increase the responsiveness of your website.
I’ve found that it can also clean up some of the other
infrastructure you might have in place to do similar things.

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Announcing Read The Docs

This year’s Django Dash just came to an end, and I’m really excited
about the project that we built. I’m sure the other teams are
feeling just as stoked, because there is an amazing amount of
awesome work that was done in the last 48 hours.

I’m really happy with the work we did, I think it is close to
production quality. Last years project [http://pypants.org]
didn’t even get a blog post because it was “almost done”. This year
I’m putting it out there because I think it is genuinely useful and
pretty damn awesome.

Our team consisted of, besides myself,
Charlie [http://charlesleifer.com] and
Bobby [http://bobbygrace.info/] who are an amazing dev and
designer, respectively.

Read The Docs [http://readthedocs.org]

Our Django Dash project solves a real problem in the Open Source
community I think. I have a love affair with
Sphinx [http://sphinx.pocoo.org/], and it’s really started to
catch on as a cross-platform documentation tool. Our idea was to
provide hosting for people’s documentation, in a central place with
nice tools built around it.

I know whenever I create a project, I have this moment where I
think about documentation, and hosting it is a problem that is hard
to solve.
I currently have a cron job running on my server pulling my docs every 5 minutes,
this is no way to host documentation.

We created Read The Docs [http://readthedocs.org] to solve this
problem. It will automatically build your documentation for you, if
you put in a github or bitbucket URL. You can also use it to create
Sphinx documentation on the site with some basic editing tools that
we created.

Cool Features

Open Source [http://github.com/rtfd/readthedocs.org]

This year’s Django Dash required submissions to be open source,
which I think is great. It gets a lot of knowledge from smart
people into the world, and I think focuses the projects more on
community problems. Feel free to take a look (again, written in 48
hours, be kind)
our source [http://github.com/rtfd/readthedocs.org] and
contribute, or laugh at us :)

Build your own docs

If you have a really basic project that doesn’t need a whole bunch
of documentation, you can use our documentation builder to create
the docs right on our site. We will host them for you and
automatically rebuild them whenever you update them. This solves a
problem for people with simple documentation needs. My teammate
Charlie [http://charlesleifer.com] made some docs for his
own project on the site [http://readthedocs.org/projects/coleifer/django-relationships/docs/]

Host existing docs

If you already have documentation in your project, but are hosting
it in a crappy way, let us host it for you. We will update it in
real time (see below) whenever your update it, and we have lots of
neat features planned that will make it silly not to use our
hosting. For example, here is a
mirror of pip’s docs [http://readthedocs.org/projects/jezdez/pip/docs/].

Web Hooks

Web hooks are pretty amazing, and help to turn the web into a push
instead of pull platform. We have support for hitting a URL
whenever you commit to your project and we will try and rebuild
your docs. This only rebuilds them if something has changed, so it
is cheap on the server side. As anyone who has worked with push
knows, pushing a doc update to your repo and watching it get
updated within seconds is an awesome feeling. If you’re on github,
simply put http://readthedocs.org/github as a post-commit hook
on your project. Otherwise your project detail page has your
post-commit hook on it.

Bookmarking

I have a problem with Django’s documentation, and it’s that it is
so big, I often find a page and then forget where I was when I need
that information again. We added simple bookmarking so that you can
find pages that you were on before. Check out the
recently bookmarked pages [http://readthedocs.org/bookmarks/]

View Tracking

Another feature is that we track which doc pages are viewed the
most. This is a great hueristic to what pages are important and
useful, and I think will be an interesting UI feature once we
hopefully get more and bigger projects on the site. Not
suprisingly, the project’s own docs are currently
the most viewed [http://readthedocs.org/views/]

Planned cool features

Full Text Search

Once we have a critical mass of documentation, being able to search
across all of it, based on tags and other attributes will be a
killer feature. I’m really excited about the possiblities here, and
think this will be the first big new feature that we will
implement.

Quick browser editing

When I find a typo in your documentation, there should be a 1-click
process to be able to make an edit and send you a diff. We want to
be able to support this with a nice UI. I think it will really
increase the quality of documentation if there is a super easy way
to update and edit existing documentation from it’s rendered
interface.

Mobile View

With we will be able to make a mobile theme that we can serve based
on user agent. This will be another killer feature to hosting your
docs on our site, because you’ll get a kick ass mobile version for
free.

Future

I really hope that this utility becomes used by the community,
because I think it is needed. I understand that large projects
would want to and should host their own documentation, but for the
90% of projects that are small, I think this is a great solution.

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Lessons Learned From The Dash: Easy Django Deployment

This is going to be a series of posts that talk about what I
learned from the Django Dash [http://djangodash.com/]. I think
it’s a really fun competetion that is also a great learning
experience. I hope that this series catch on, and other people
write about some of the things that they learned in the Django
Dash.

What I learned

The thing that I learned about during my dash project was the
awesomeness that is Gunicorn [http://gunicorn.org/]. It is an
awesome HTTP server that I think has really solved the “how do I
deploy Django” problem.

Here are the steps involved in deploying a site using
the gunicorn [http://thegunicorn.com/]:

	pip install gunicorn

	Add ‘gunicorn’ to your installed apps

	./manage.py run_gunicorn -b 127.0.0.1:1337 –daemon

It really is that simple. Gunicorn is the fastest way to having a
production ready web server serving your site that I’ve found in
the Django realm. However, Gunicorn by itself isn’t production
ready. It is recommended to deploy something in front of it. We
used Nginx [http://wiki.nginx.org/Main], which is another super
simple web server.

Here is basically the simplest possible configuration of nginx that
will work for your gunicorn backend server.

server {
 listen 80;
 server_name example.com;
 access_log /var/log/nginx/example.log;

 location / {
 proxy_pass http://127.0.0.1:1337;
 }
}

After you restart Nginx, you should be able to hit your server at
port 80 and have it be serving your Django web app. This allowed us
to get our application into production during the dash in about 10
minutes, which was a great time saver.

I’d be curious if people have had any trouble with Gunicorn in
deployment, because as far as I’ve seen its production ready. As a
“first Django deployment” set up I think it’s hard to beat. I’ve
also noticed that is uses significantly less RAM than an
Apache/mod_wsgi set up (I know this can be configured away, but by
default it’s much better). This is great for the memory constrained
deployment platforms a lot of us are running on.

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

A better webhook for code hosting

I have written a couple of different services that have needed to
be required when your repository has had code committed to it. The
normal path of getting this to happen is to ask your users to add
your special URL to their list of post-commit hooks for their
repository. However, once you have 3 or 4 or 10 services that need
to do this, it becomes cumbersome.
If I am a user that has 5 repos and I want to use 5 services, this is 25 times that I need to copy/paste some URLs into a form on a website.

I think that a publish subscribe model is better here, because that
way the end user doesn’t need to constantly be caring about who is
listening to their commits. I think that
Pub Sub Hub Bub [http://code.google.com/p/pubsubhubbub/] sounds
like it does what I want. However, I think it should be baked into
the tools.

I am imagining an opt-in service for your repository (and other
things), that gets pushed to when a user commits, and I can
subscribe to. So an example workflow would be

	User adds their repository to the PSHB or whatever service
(push.github.com/eric/my_repo)

	I POST to the Hub with my URL I want to be pushed to on commit

	When a User commits, github pings the PSHB Hub, which pushs the
commits to anyone listening.

This allows my service to listen in to your repositories updates
without having to force you to go through a bunch of hassle. This
just feels like a better fit for the current webhook model that we
have.

I think that this is what PSHB does, but it is more focuses on
RSS/ATOM, instead of just being a replication hub for JSON data. I
assume that PSHB could be shoehorned into this task, and it would
make the atmosphere of apps around code a lot easier to write.

As a side note, it would be pretty awesome if this same service
allowed bitbucket, github, google code, and launchpad to post data
into it, but sanitized it so the listener on the other side only
had to support one format of data.

Edit: Looks like Superfeedr has
already done this [http://github.superfeedr.com/].

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Lessons Learned From The Dash: Nginx SSI

Continuing from my
previous post [http://ericholscher.com/blog/2010/aug/16/lessons-learned-dash-easy-django-deployment/]
about Django Dash [http://djangodash.com], I will be talking
about another thing that I learned from the dash. This isn’t as big
of a post, but just something that we ran into that caused us some
trouble.

We are hosting documentation for other projects, and we needed a
way to put a toolbar on the top of the pages so users can still get
around our site. We started out by hacking this into the sphinx
template as static html, which was annoying because it didn’t let
us determine if the user was logged in, owned the project, etc. So
we decided to load the header dynamically.

Using Nginx Ghetto ESI

We were deploying on Nginx, and luckily
this post [http://joshuajonah.ca/blog/2010/06/18/poor-mans-esi-nginx-ssis-and-django/]
about Ghetto ESI with Nginx laid it out pretty well. We only ran
into one problem with this approach, and it was minor.

The implementation is that we are hacking the SSI tag into the
Sphinx template’s we are rendering at the top of the page.

{% block relbar1 %}
<!--# include virtual="/render_header/" -->
{{ super() }}
{% endblock %}

Then you simply add a ssi on; into your Nginx configuration for
your site. This makes the page call /render_header/ to fill out
the top of the page when the user hits a documentation page.

The problem

The problem with this is that this doesn’t work in your local
testing environment. So Joshua’s post earlier has a piece of
middleware that you can include in your Django project to emulate
the Nginx include behavior.

We turned this on, but every once in a while our pages were getting
randomly cut off halfway through the response. We looked into it a
little bit, and figured out that it was because of the response’s
Content Length header was still set to the old value. So
our updated middleware [http://github.com/rtfd/readthedocs.org/blob/c35c9e142e5a602eca8fae88c9bfd54497c5ddf8/core/middleware.py#L30]
simply added one line to the reponse.

response['Content-Length'] = len(response.content)

This allowed our pages to render correctly in testing, and then in
production Nginx will hit the include before Django sees it, so the
middleware never processed.
If you are changing the content of your response in middleware, make sure that you update the Content-Length header.

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

New features on Read The Docs

Since the Django Dash ended, We’ve been working on adding some
requested new features to
Read The Docs [http://readthedocs.org]. There are a couple of
major ones that we have added that I’d like to talk about.

hg and svn support

We’ve added support for all of the version control systems that
people have requested. When you sign up or edit a project, you can
now tell us which VCS you are using, and we’ll use that to check
out your code to build your documentation.

There are two libraries that I wish existed: One to smartly parse
urls into the correct repository, and a standard VCS abstraction
that lets me treat all VCS’ as the same. These would integrated
presumably, so I could do vcs clone <url> and vcs update,
and it would “Just Work”

Whitelisting support

By default we don’t execute any python code when you import your
project. This is a security precaution that we take, so that means
disabling all extensions by default. A lot of people are using
autodoc and some other extensions, so we have added the ability to
whitelist projects so that they are built without any sanitization
on our part.

A sweet logo

Our designer Bobby [http://bobbygrace.info/] made a sweet logo
for the site, and has been adding lots of little visual tweaks that
I’m not qualified to talk about :) However, it seems that whenever
I look at the site, it gets a little prettier, that’s how I usually
know that design is being done.

Subdomain and CNAME support

This is a really exciting one for me, because I’ve been learning
more and more about sysadminery lately, and this was a fun little
mixing of the two. For any project, you can now access the projects
documentation at <slug>.readthedocs.org, for example, pip’s
documentation is now at pip.readthedocs.org.

Now that we have subdomain support, this makes supporting CNAME’s
really simple. So if you have your own domain name, and you’d like
those docs to point to us, it’s simple. All you need to do is add a
CNAME record for that domain in your DNS settings to point at your
subdomain URL. Pip is another good example here,
pip-installer.org [http://www.pip-installer.org/] now is hosted
on RTD. Other notable examples are
djangotesting.com [http://djangotesting.com] and
djangowoodies.com [http://www.djangowoodies.com] :)

All of this support is
implemented in middleware [http://github.com/rtfd/readthedocs.org/blob/1734c700caf7cdbfc43570cf3dea56c8fc11d2c5/core/middleware.py#L35]
and only ends up being about 25 lines of code. There are going to
be some complications when we try to add multiple version support,
and internationalization, as you can’t really specify those well on
subdomains. I see us having a “default” project version, as well as
letting you have other versions hosted as well.

RTFD.org

“RTFM” is a well known term in the programming community. Luckily
when we were scheming up names for our project, we noticed that
rtfd.org [http://rtfd.org] was available. We went ahead and
bought it, and now we’re supporting <slug>.rtfd.org and
rtfd.org/<slug> redirects that go to your RTD page. This is a
nice little keystroke saver, as well as a fun was to refer people
to your documentation. This is implemented simple in
an Nginx server directive [http://gist.github.com/553773]. I’m
sure it can be improved upon, but it’s working well at the moment.

I think adding the ability to have “smart slugs” here would be
interesting, so it could actually perform a search or something,
and return the top result, kinda like LMGTFY. This could be a neat
feature to add on.

LaTeX support

LaTeX is a pain to get setup, so if you want to support rendering
LaTeX, we now support that as well. The
sympy [http://code.google.com/p/sympy/] has been testing their
docs on RTD, and have helped me clean up a bunch of bugs. The
Geometric Algebra [http://sympy.readthedocs.org/modules/galgebra/GA/GAsympy.html#what-is-geometric-algebra]
section shows off some of the LaTeX goodness.

* Update:* Just for kicks, we currently have 120 users and 80
projects currently hosted on Read The Docs. At least a couple of
these are using RTD as their official documentation host. I’m
pretty happy with the uptake that’s already happened in the last 2
weeks (wow, that little?!). Thanks everyone for checking it out!

* Update 2* We also have a new IRC channel if you need help or
have questions, it’s #rtd on irc.freenode.net.

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Conference Fun

It’s conference season and I realized that I haven’t talked about
any of the ones that I’ve been to or am going to, so I figured it
would be a good post.

Djangocon US

Djangocon US [http://djangocon.us] is just around the corner,
and I’m getting excited about going back to Portland for another
year. The conference is being held in the second week of September
(7-9th) with
sprints [http://ericholscher.com/blog/2009/nov/16/you-should-stay-sprints/]
afterwards. I will be speaking again at Djangocon, talking about
the awesome applications that the Python community has put
together. Modeled and named after my blog series “Large Problems,
Mostly Solved”, and the
full desciption [http://djangocon.us/schedule/sessions/32/] is
available on the Djangocon site. The
full schedule [http://djangocon.us/schedule/] of speakers has a
little bit for everyone.

My friend Danny has been
highlighting [http://pydanny.blogspot.com/2010/08/getting-excited-about-djangocon-us.html]
some of the
talks [http://pydanny.blogspot.com/2010/08/more-reasons-to-go-to-djangocon.html]
and other reasons he’s also excited about going this year on his
blog. It’s a great oppertunity to meet up with all the members of
the community and see them present ideas that they have been
working on, and it really makes you appreciate the scope of the
Django world. I highly recommend going for anyone who is interested
in or doing Django developement.

Strange Loop

Strange Loop [http://strangeloop2010.com/] is a conference right
around the corner in St Louis, Mo. It is a general developer
conference, without any kind of specific focus besides being
awesome. The keynotes that I’m super excited about are Douglas
Crockford (Author of
Javascript: The Good Parts [http://www.youtube.com/watch?v=hQVTIJBZook])
and Guy Steele (whos
Growing a Language [http://video.google.com/videoplay?docid=-8860158196198824415#]
talk is excellent).

I think a crew of us from Lawrence are going to go, and the
full speaker list [http://strangeloop2010.com/speakers] doesn’t
fail to disappoint. I think it will be a really interesting
experience, with lots of different communities coming together.

Djangocon EU

Djangocon EU [http://djangocon.eu] is the Django communities
conference in Europe. It was held in Berlin this year, and was a
smashing success. It was the first conference run by the community,
and I think the organizers did a fantastic job with the food,
talks, venue, and general galavanting around Berlin that ensued.

I realized that I forgot to post the slides to my talk afterwards,
so I’ll go ahead and post it here for posterity. It is a talk about
Continuous Integration, Testing, and some of the tools and utils in
that realm. If you haven’t seen it before, I hope you learn
something:

Making the most of your Test Suite

View more presentations from ericholscher.

I know that I love software conferences, especially Open Source
oriented ones (I’ve never been to another kind :). So I hope to see
(or that I saw you) at one of these awesome events.

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Djangocon Talk

I just gave a talk title “Large problems, Mostly solved”, which you
will recognize if you’ve been reading this blog for a little while.
I took my past series of
Large problems [http://ericholscher.com/tag/largeproblems/]
posts, and expanded on them into a full talk.

The video and slides are posted below. Thanks for the A/V team
kicking ass this year and getting the videos posted in amazing
time. Also many thanks to the conference organizers and volunteers
who managed to make it all happen, it was a great time!

Large problems, Mostly Solved

View more presentations from ericholscher.

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Virtualenv Tips

Virtualenv [http://virtualenv.readthedocs.org/] is a project
that is indispensable for most Python devs these days. I am writing
down some tips here so mainly for personal reference, and because I
found them useful.

Virtualenv & Upstart

For my ReadTheDocs [http://readthedocs.org] project, I was
wanting to run celery [http://celeryproject.org/] as a
background process that processes documentation building. I’m
running Ubuntu, so their built-in upstart service seems like a
logical choice. I really like upstart because of it’s simple
configuration, but it is rather undocumented (this
Stanzas [http://upstart.ubuntu.com/wiki/Stanzas]) page is a
useful starting point).

Carl Meyer [http://twitter.com/#!/carljm] pointed out to me that
in order
to get inside the context of a virtualenv, you don’t need to munge your pythonpath or anything, but simply run the correct script from inside the virtualenv.
So a simple /path/to/virtualenv/bin/django-admin.py celeryd was
all that was needed to get inside the virtualenv’s context.

This also true of the python executable inside your python
directory. /path/to/virtualenv/bin/python will allow you to run
any python script inside of that virtualenv’s context.

I also wanted to be running my jobs as the user for that site, so
sudo is the correct tool for that. The final file ended up
looking like this:

description "Celery for ReadTheDocs"

start on runlevel [2345]
stop on runlevel [!2345]
#Send KILL after 20 seconds
kill timeout 20

script
exec sudo -i -u docs django-admin.py celeryd -f /home/docs/sites/readthedocs.com/run/celery.log -c 2 -B
end script

respawn

The only other interesting bit there is the -i option to sudo,
which means it will run the command as a login shell, picking up
the environment for the user. This means it has the correct path
and everything set, so that django-admin.py works without an
explicit PATH.

Adding site-packages in after initial creation

Frank Wiles [http://www.frankwiles.com/] ran into this problem
on IRC, where he wanted to add in the site-packages after creating
a virtualenv with --no-site-packages. It turns out to be really
simple, in that you only have to remove the
no-global-site-packages.txt in the lib/python2.x directory
inside the virtualenv. After that virtualenv will go ahead and
fallback to the global site packages happily.

I’d imagine this would work the other way as well, if you want to
not have your site-packages included, you could add this file into
your virtualenv.

Use virtualenvwrapper

Virtualenvwrapper [http://www.doughellmann.com/docs/virtualenvwrapper/]
is a nice set of extensions around virtualenv. It gives you handy
command line helpers, like workon which autocompletes the names
of your virtualenv’s. It has its own
Tips and Tricks [http://www.doughellmann.com/docs/virtualenvwrapper/tips.html]
page that has some neat ideas about how to improve your virtualenv
experience.

Deploying Virtualenv

Deploying with virtualenv and apache has been well covered. I
recommend this
Caktus post [http://www.caktusgroup.com/blog/2010/04/22/basic-django-deployment-with-virtualenv-fabric-pip-and-rsync/]
that gives some good examples.

The main idea however, is that you make sure your the virtualenv’s
pythonpath is on your pythonpath, or that you are running the
virtualenv’s python when you run your webserver. For apache, in
your wsgi file, you generally do something like:

site_packages = os.path.join(PROJECT_ROOT, 'env/lib/python2.6/site-packages')
site.addsitedir(os.path.abspath(site_packages))

For a gunicorn deployment, you would do something along the lines
of /path/to/virtualenv/bin/python manage.py run_gunicorn.

Your tips

I’d love to hear your tips about how to use virtualenv in the best
way possible. I know that my workflow is probably lacking, and
these aren’t all or even many of the neat things you can do with
virtualenv.

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Building a Django App Server with Chef: Part 3

Alternate title: Show the world what you’ve got.

This is Part 3 of my Chef tutorial. Today we’re talking about
deployment. You can check out the first 2 parts of the series:

	Part 1: Chef Beginnings [http://ericholscher.com/blog/2010/nov/8/building-django-app-server-chef/]

	Part 2: Python environment buildout [http://ericholscher.com/blog/2010/nov/9/building-django-app-server-chef-part-2/]

Today’s code will be in the git repo under the tag
blog-post-3 [https://github.com/ericholscher/chef-django-example/tree/blog-post-3].

What we’ll need

We’ll be taking the Django application that we have on the server
and actually deploying it. Let’s make a list of what we’ll need:

	A web server to sit in front and proxy requests

	A WSGI server

	A way to keep both of these things running

	A caching layer

We’ll be using Nginx, Memcached, Upstart, and Gunicorn. This is my
preferred deployment stack as of late, mainly because of the simple
setup.

Let’s get started

A web server

Getting Nginx up and running should be old hat by this point. We’re
going to need the package and service Resources, which will tell
Chef to install and run it.

cookbooks/main/recipes/nginx.rb

package "nginx" do
 :upgrade
end

service "nginx" do
 enabled true
 running true
 supports :status => true, :restart => true, :reload => true
 action [:start, :enable]
end

cookbook_file "/etc/nginx/sites-enabled/readthedocs" do
 source "nginx/readthedocs"
 mode 0640
 owner "root"
 group "root"
 notifies :restart, resources(:service => "nginx")
end

cookbook_file "/etc/nginx/nginx.conf" do
 source "nginx/nginx.conf"
 mode 0640
 owner "root"
 group "root"
 notifies :restart, resources(:service => "nginx")
end

As you can see, we’re providing our own nginx.conf and a
readthedocs site configuration. I’m not going to paste these in, as
they are pretty application specific, but you can look at them
on Github [https://github.com/ericholscher/chef-django-example/tree/blog-post-3/cookbooks/main/files/default/nginx/]
if you’re curious. I also wrote about it
a while back [http://ericholscher.com/blog/2010/aug/28/new-feautures-read-docs/].

The only new part here is the notifies command, which is pretty
nifty. It basically means that whenever you change the nginx.conf
file, it should restart Nginx, which is a really nice feature.

A WSGI Server

Yesterday, when we installed the deploy_requirements.txt with pip,
it pulled in gunicorn [http://gunicorn.org/]. So we actually
have Gunicorn already installed in our virtualenv, waiting for us
to use it. The only difference is I actually committed a change to
the ReadTheDocs source so that it will pull Gunicorn from the git
master, which I’ll explain below.

Upstart

Note: I use upstart because it ships with Ubuntu, so you don’t
need to install a separate package. However, it has pretty horrible
documentation, with the
Stanzas [http://upstart.ubuntu.com/wiki/Stanzas] doc probably
the best clue as to what it supports.

Here is where things get interesting. I spent a bunch of time
trying to get gunicorn and upstart to play nicely yesterday night,
but it wasn’t working. I went on the #gunicorn IRC channel on
Freenode today, and talked with benoitc. He was awesome and
patched gunicorn [https://github.com/benoitc/gunicorn/commit/f29c61091691135dcfae029a7eadf1663a06a73e]
to work with Upstart for me.

Here is the upstart script that we’re using to keep gunicorn
running:

cookbooks/main/files/default/gunicorn.conf

description "Gunicorn for ReadTheDocs"

start on runlevel [2345]
stop on runlevel [!2345]
#Send KILL after 5 seconds
kill timeout 5
respawn

env VENV="/home/docs/sites/readthedocs.org"

#Serve Gunicorn on the internal rackspace IP.
script
exec sudo -u docs $VENV/bin/gunicorn_django --preload -w 2 --log-level debug --log-file $VENV/run/gunicorn.log -p $VENV/run/gunicorn.pid -b 10.177.69.207:8888 $VENV/checkouts/readthedocs.org/settings/postgres.py
end script

As you can see, an Upstart script is a pretty clean way to do this.
If you’ve ever tried to write an old SysV-style init script, this
will look beautiful. You’ll notice that we aren’t passing the
–daemon parameter to gunicorn, this is because upstart will
background the process for us, and keep track of everything, so we
don’t need gunicorn’s daemonizing behavior.

It should be pointed out how awesome it is that we can run a
production ready WSGI server with a single line of bash. If you’ve
ever set up a mod_wsgi install, needing to fuddle with your
apache.conf and a WSGI file and everything makes it a chore. This
is quite simply the easiest way to deploy a WSGI application.

Then we need some additions to
cookbooks/main/recipes/readthedocs.rb:

cookbook_file "/etc/init/readthedocs-gunicorn.conf" do
 source "gunicorn.conf"
 owner "root"
 group "root"
 mode 0644
end

service "readthedocs-gunicorn" do
 provider Chef::Provider::Service::Upstart
 enabled true
 running true
 supports :restart => true, :reload => true, :status => true
 action [:enable, :start]
end

Here you can see we’re doing a similar thing to the other service
declarations. We however need to tell Chef to use Upstart for this
service, instead of defaulting to init.d. Other than that,
everything here should look similar to the other files and services
we’ve set up.

Memcached

As you would expect, installing memcached is just like nginx:

cookbooks/main/recipes/memcached.rb

package "memcached" do
 :upgrade
end

service "memcached" do
 enabled true
 running true
 supports :status => true, :restart => true
 action [:enable, :start]
end

cookbook_file "/etc/memcached.conf" do
 source "memcached.conf"
 mode 0640
 owner "root"
 group "root"
 notifies :restart, resources(:service => "memcached")
end

The memcached.conf is so short, I might as well include it here:

-d
logfile /var/log/memcached.log
-m 64
-p 11211
-u nobody
-l 127.0.0.1

Memcache’s config file is pretty neat, because it’s basically just
a list of arguments to pass to the daemon when it’s started. A
little bit like a pip requirements file is just commands to pass to
pip install when it’s run.

Wrapping up

Now that you have these awesome new recipes, and additions to old
ones, we need to make sure they’re actually being run. Your
run_list in your node.json file should now look something like
this:

"run_list": ["main::default", "main::python", "main::readthedocs", "main::memcached", "main::nginx"],

At this point, it’s pretty neat. I can run a
fab install_chef update, wait about 5 minutes, and go from a
freshly paved server to a fully functioning app server.

Tomorrow we’ll be adding some monitoring and auxiliary niceties.
This includes setting up Munin, Celery, generating the /etc/hosts
file, and throwing in a little .bashrc magic to make the user
experience nicer.

There were a couple of questions yesterday about databases and
other things. My current problem is running an application server,
which is what I’ve accomplished. However, with my new-found love
affair for chef, I will definitely be making my Database/Utility
box into a chef configuration really soon. I might not write it up
in so much detail, but hopefully you’ve learned enough from this
series that I can just publish the code.

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Building a Django App Server with Chef: Part 4

Alternate title: There’s no place like home!

This is Part 4, the final part, of my Chef tutorial. Today we’re
talking about the odds and ends left over to make the server nice
to use. You can check out the first 3 parts of the series:

	Part 1: Chef Beginnings [http://ericholscher.com/blog/2010/nov/8/building-django-app-server-chef/]

	Part 2: Python environment buildout [http://ericholscher.com/blog/2010/nov/9/building-django-app-server-chef-part-2/]

	Part 3: Deployment [http://ericholscher.com/blog/2010/nov/10/building-django-app-server-chef-part-3/]

Today’s code will be in the git repo under the tag
blog-post-4 [https://github.com/ericholscher/chef-django-example/tree/blog-post-4].

What we’ll need

So we have our app server up and running, and ready for traffic.
Now we just need to add some other bits around the outside for it
to be fully functioning and nice to use.

	Monitoring with Munin [http://munin-monitoring.org/]

	Background tasks with Celery [http://celeryproject.org/]

	A firewall for security

	A /etc/hosts file for talking with other nodes

	A .bash_profile file so that when you shell in you’ll have a
nice environment

Let’s get started.

Monitoring with Munin

For doing monitoring with munin, we’re going to need to learn our
final Chef concept, which is Templates. You should be pretty
familiar with them already, except they use Erb, which is a
template language that lets you embed Ruby.

We’re only going to be configuring the Munin node here. This
assumes that you have a munin server running on another machine
that you want to give access to monitor your new app server. These
configs depend on you putting an entry like this in your node.json,
which points at the IP of the master server:

"munin_servers": ["10.177.243.34"],

Then here is how you would write the Recipe.

cookbooks/main/recipes/munin.rb

package "munin-node" do
 :upgrade
end

service "munin-node" do
 enabled true
 running true
 supports :status => true, :restart => true, :reload => true
 action [:enable, :start]
end

if node.attribute?("munin_servers")
 template "/etc/munin/munin-node.conf" do
 source "munin-node.conf"
 mode 0640
 owner "root"
 group "root"
 variables :munin_servers => node[:munin_servers] || []
 notifies :restart, resources(:service => "munin-node")
 end
end

The template Resource here is the interesting part. We’re
surrounding it with a conditional, that makes sure that we’re
defined a ‘munin_servers’ key in our node.json. Then we’re saying
that we’re going to render the munin-node.conf file with the source
template ‘munin-node.conf’. This template will be given the extra
varibale ‘munin_servers’, which is passed in using the variables
attribute.

Template are placed inside the cookbook in a similar place to
files.

cookbooks/main/templates/default/munin-node.conf

<% @munin_servers.each do |server| -%>
allow ^<%= server.to_s.gsub(/\./, '\.') %>$
<% end -%>
allow ^127\.0\.0\.1$

host *
port 4949

log_level 4
log_file /var/log/munin/munin-node.log
pid_file /var/run/munin/munin-node.pid
background 1
setsid 1
user root
group root

ignore_file ~$
ignore_file DEADJOE$
ignore_file \.bak$
ignore_file %$
ignore_file \.dpkg-(tmp|new|old|dist)$
ignore_file \.rpm(save|new)$
ignore_file \.pod$

The interesting part here is the iteration over the munin_servers
list. It’s just doing a simple ruby loop, and then outputting the
IP address that it contains into the format that munin’s
configuration file expects.

Note: This data-driven template rendering is a really powerful
idiom, and one of my favorite parts about Chef. This allows you to
add a new server to your pool, and have all of your configuration
files updated automatically across all your server. This is hugely
powerful, and one of the primary wins of Configuration Management.
This will be shown to better effect in the /etc/hosts file later.

Installing Celery

Installing celery is much akin to Gunicorn that was discussed
yesterady. The dependencies were installed from our pip
requirements file, and we just need to make it run in upstart.
We’ll be doing that with the following setup.

Additions to cookbooks/main/recipes/readthedocs.rb

cookbook_file "/etc/init/readthedocs-celery.conf" do
 source "celery.conf"
 owner "root"
 group "root"
 mode 0644
 notifies :restart, resources(:service => "readthedocs-celery")
end

service "readthedocs-celery" do
 provider Chef::Provider::Service::Upstart
 enabled true
 running true
 supports :restart => true, :reload => true, :status => true
 action [:enable, :start]
end

cookbooks/main/files/celery.conf

description "Celery for ReadTheDocs"

start on runlevel [2345]
stop on runlevel [!2345]
#Send KILL after 20 seconds
kill timeout 20

script
exec sudo -i -u docs django-admin.py celeryd -f /home/docs/sites/readthedocs.org/run/celery.log -c 2 -E -B
end script

respawn

There isn’t anything new or interesting here. Just more of the same
as before, to get another piece of infrastructure up and running.

A ghetto firewall install

I’m a big fan of not enabling services that aren’t running as a
fundamental security practice, but having a basic firewall to make
sure that those are the only ports open isn’t a bad idea either.
I’m not a great expert, so this is probably the weakest part of my
knowledge in this series, so take it with a grain of salt.

My favorite firewall utility is ufw. It makes managing your
firewall really simple. Here is my super basic way to configure my
firewall, it pretty much sucks :)

cookbooks/main/recipes/security.rb

package "ufw" do
 :upgrade

service "ufw" do
 enabled true
 running true
 supports :status => true, :restart => true, :reload => true
 action [:enable, :start]
end

bash "Enable UFW" do
user "root"
 code <<-EOH
 ufw allow 22 #SSH
 ufw allow 80 #Nginx
 ufw allow 4949 #Munin
 EOH
end

As you can see, we’re just enabling SSH, Nginx, and Munin. If we
need to install any more packages, we’ll need to expicitly open a
port, which is usually good to remind me that I’m doing it.

/etc/hosts

Whenever I’m in the cloud, I find keeping track of my other servers
to be a pain. You generally want to use the internal backplane to
communicate between your servers, so I use the /etc/hosts file to
make that simple.

We’re going to depend on an entry in your node.json that looks
something like this:

"all_servers": {"Golem": ["10.177.234.234", "173.203.234.234"],
 "Chimera": ["10.177.234.234", "204.232.234.234"],
 "Hydra": ["10.177.234.234", "173.203.234.234"] }

Which is a mapping of all your servers, with their internal and
external IPs. This will be useful to have for lots of different
recipes, and it would be nice to autogenerate this, but when you
only have a few servers it isn’t so bad.

The rest of out hosts configuration looks like this:

Addition to cookbooks/main/recipes/default.rb

if node.attribute?("all_servers")
 template "/etc/hosts" do
 source "hosts"
 mode 644
 variables :all_servers => node[:all_servers] || {}
 end
end

cookbooks/main/templates/default/hosts

127.0.0.1 localhost localhost.localdomain

<% @all_servers.each_pair do |name, ips| -%>
<%= ips[0] %> <%= ips[1] %> <%= name %>
<% end -%>

As you can see, when we add a server to the all_servers hash, it
will propogate out to the /etc/hosts file of our app server. This
makes me really happy, and showcases some of the more advanced use
cases of Chef.

Customizing your shell

Now that we have the server all set up, it won’t be much good if it
isn’t nice to use when we shell in. So here is how I go ahead and
add in some nicities to bash for when you log in.

Addition to cookbooks/main/recipes/readthedocs.rb

cookbook_file "/home/docs/.bash_profile" do
 source "bash_profile"
 owner "docs"
 group "docs"
 mode 0755
end

cookbooks/main/files/default/bash_profile

. .bashrc

export PIP_DOWNLOAD_CACHE=/tmp/pip
export DJANGO_SETTINGS_MODULE=settings
export PYTHONPATH=$PYTHONPATH:~/sites/readthedocs.org/checkouts/readthedocs.org
export EDITOR=vim

. sites/readthedocs.org/bin/activate

cd ~/sites/readthedocs.org/

alias chk='cd /home/docs/sites/readthedocs.org/checkouts/readthedocs.org'
alias run='cd /home/docs/sites/readthedocs.org/run'

First off, we’re sourcing the .bashrc file, so that we get all the
nice things it provides, like a colored PS1. Then we’re setting
some environment variables so that django-admin.py and pip work
nicely. Then we activate our virtualenv and switch into it’s base
directory, so we’re always starting where we want to be on login.
Then we just have a couple of aliases for easy navigation around.

I like how this makes the user experience of shelling into the
server a lot nicer, and makes the manual workflow that you’ll
eventually have to fiddle with really nice.

Conclusion

So that’s the end of this tutorial. I hope that it was instructive
in learning Chef, as well as providing some insights into the
deployment of a Django application. Tomorrow (or if I’m too tired,
next week), I’ll be providing some thoughts on how I think chef
treated me, and how I feel about the build out.

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Site upgrades

Today I went ahead and flipped the switch on a couple of server
migrations I’ve had queued up. One of these updates is moving
ReadTheDocs [http://readthedocs.org] over to its own dedicated
server, that I built up over the week in my
Chef Tutorials [http://ericholscher.com/tag/chef-series/].

Over at RTD, you won’t notice too many changes, other than it
should be FASTER! I had a bunch of sites running on an underpowered
server, and now I have it set up nicely, and running on it’s own
machine, it’s chugging along great.

The other change is that I migrated my blog (what you’re reading!)
over to Mingus [https://github.com/montylounge/django-mingus]. I
was running an oold copy of django-basic-blog, which is what Mingus
is based off, so the migration was easy. I moved it over from my
legacy Slicehost account onto my new server infrastructure that
I’ve been building. There is also a slight refresh of the theme of
the sight, mainly the Mingus defaults poking through on top of my
old theme.

The other bits you might notice is that my code snippets should now
be syntax highlighted. It seems pygments gets confused sometimes,
but it’s better than it was.

Please report any bugs that you see on either of the sites above to
me on Twitter, or here in the comments. Thanks!

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Correct commands to check out and update VCS repos

In my work in ReadTheDocs [http://readthedocs.org/], we now
support all of the major VCS repositories: svn, bzr, hg, and git.
At this point in time we’re only checking out the repos to their
default branches, and then trying to trying to update them again to
another revision. While writing this code I have had at least 3
different bugs that caused the repos not to be updated correctly.
So I’m going to detail here the exact code that allows me to do
this for each of these types of repos, hopefully so that when you
or I need to do this in the future, we can at least start from
here.

Let me know if any of these are wrong, because they probably are.

Git

Checking out a repo:

git clone --depth=1 <remote_url> <local_filepath>

Updating a repo:

git --git-dir=.git fetch
git --git-dir=.git reset --hard origin/master

I’m specifying the –git-dir here because my master repository is
git as well, and I don’t want to risk the git commands cascading up
and applying to the outer repository. I’m also specifying –depth=1
so that I don’t clone the entire repository, but only the latest
commit. I don’t need the history, so I’m doing this. As you can
tell, I’m more familiar with git than the other VCS systems here.

Svn

Checking out a repo:

svn checkout <remote_url> <local_filepath>

Updating a repo:

svn revert --recursive .
svn up --accept theirs-full

I ran into problems here where I was calling revert without
recursive and it wasn’t doing anything! You need to do this from
the top-level of the repo, and it will make sure all the state
lower in the repo is reverted.

Bzr

Checking out a repo:

bzr checkout <remote_url> <local_filepath>

Updating a repo:

bzr revert
bzr up

This one is nice and easy.

Hg

Checking out a repo:

hg clone <remote_url> <local_filepath>

Updating a repo:

hg pull
hg update -C .

Again, a slightly different syntax to make sure that you’re
deleting all the files, and with the update command.

I hope this helps people in the future at least get to the point
where they can pull down code and update it. My next task is
figuring out how to support branching in all of the different
repositories which is going to be fun, because they have different
filesystem structures.

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Using Haystack to index non-database content

Over on ReadTheDocs, I wanted to build
search [http://readthedocs.org/search/?q=crawler] around the
documentation that we’re hosting. I chose
Haystack [http://haystacksearch.org/] and
Solr [http://lucene.apache.org/solr/] for this, because it’s the
best way to do search in Django these days. However, I’ve only ever
used Haystack to index content that is in the database. I thought
about trying to add all the rendered HTML from the documentation
into the database, but that was a non-starter.

I ended up adding a ImportedFile model to the database, which would
contain the metadata for the HTML file:

#!python
class ImportedFile(models.Model):
 project = models.ForeignKey(Project, related_name='imported_files')
 name = models.CharField(max_length=255)
 slug = models.SlugField()
 path = models.CharField(max_length=255)
 md5 = models.CharField(max_length=255)

This allows me to link the SearchIndex in haystack to a model. Then
the interesting part is in the Haystack SearchIndex, where I
override the prepare_text method, allowing me to read the data in
from the filesystem instead of from the database.

#!python
class ImportedFileIndex(SearchIndex):
 text = CharField(document=True)
 author = CharField(model_attr='project__user')
 project = CharField(model_attr='project__name')
 title = CharField(model_attr='name')

 def prepare_text(self, obj):
 full_path = obj.project.full_html_path
 to_read = os.path.join(full_path, obj.path.lstrip('/'))
 try:
 content = codecs.open(to_read, encoding="utf-8", mode='r').read()
 return content
 except IOError:
 print "%s not found" % full_path

site.register(ImportedFile, ImportedFileIndex)

This means that I don’t have to bloat my database with all my
rendered HTML, but have the full HTML stored in Solr which works
for querying.

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Required Reading

At work [http://jobs.github.com/companies/Mediaphormedia], we
have a wiki page that’s called Required Reading. Named after that
oh-so-lovely tradition in high school or college of having books
that you needed to read over the summer before you started class.
The idea being that they are relics of the culture of the company,
and if you read everything, you will understand a lot about how
work (and play) is done.

I think this is something useful that most companies should have.
It was basically split into two parts: Silly and Serious. The silly
parts are so that you can understand all of the inside jokes and
references that people are bound to make. The serious parts are
more philosophy and thoughts behind how we write code and do
things.

Silly

Being a python shop, this
Youtube Monty Python playlist [http://www.youtube.com/view_play_list?p=CDFEA6D52E5CC0EC]
is a must watch. It’s got most of the famous Python gags, and being
knowledgeable about the languages namesake makes you a more rounded
human being. Speaking of namesakes, Django Reinhardt is a great
jazz player, so I recommend you
learn about [http://djangopedia.com/wiki/index.php?title=Main_Page]
him as well. He was quite the bad ass.

After that, there are just some of the classic online videos that
everyone should watch:

	DJ Ango [http://www.youtube.com/watch?v=PLUS00QrYWw]

	Bill O’Reily
DO IT LIVE (remix) [http://youtube.com/watch?v=5j2YDq6FkVE&NR=1]
for when you’re doing it live.

	Nerf guns gone wild.
Again [http://flickr.com/photos/webology/3023204926/].

	SCHNAPPI [http://youtube.com/watch?v=izibSMAQhEY]. Cutest
Crocodile Ever.

and such.

Serious

The serious posts are a little more relevant, because they are more
about the philosophy of how to code. I have been looking through a
lot of really great posts on this subject lately, and these are
some of my favorites:

	Code like a Pythonista [http://python.net/~goodger/projects/pycon/2007/idiomatic/handout.html]
(which links to pep8 and pep20)

	Pylons Unit Testing Guidelines [http://docs.pylonshq.com/community/testing.html]

	The Art of Unix Programming [http://www.faqs.org/docs/artu/]

Then there are some of the more topical guides that give a good
knowledge and understanding of some of the fundamental things that
you do at work. The unit testing guide above is a good example, but
there are a few as well:

	Richardson Maturity Model (for REST) [http://martinfowler.com/articles/richardsonMaturityModel.html]

	HTTP Caching [http://www.mnot.net/cache_docs/]

	Understanding the GIL [http://blip.tv/file/2232410] - Talk by
David Beazley

	Pro Django [http://prodjango.com/] ($$)

I think that having a guide to the culture of the company is really
useful for people that are getting started. Plus I think it’s a
good way to remind people of what the values are of your team.
Hopefully silliness is valued as much as good work, and you have a
place to go when you want to see silly bits of the past.

I’d love to hear if other people have other ways of introducing
culture to their companies. I’d also love to see some other really
good topical guides on things that you may love, as I’m sure there
are tons more out there.

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Celery Tips

Following on yesterday’s post about
Virtualenv Tips [http://ericholscher.com/blog/2010/nov/1/virtualenv-tips/],
I will be talking about celery [http://celeryproject.org/] tips.
Yesterday I talked about how to run celery with upstart easily, and
today I’ll be expanding on that below as well as talking about how
to set it up using supervisord.

Note: Also interesting, I wrote a
Big list of django tips [http://ericholscher.com/blog/2008/oct/5/django-tips/]
back in 2008, that still has a lot of good information.

Running celery in development

When you run celery in production, you should be using a queue on
the backend. However, when you’re running celery in development,
it’s nice to execute the code paths, but not actually need a queue.
This is where the
CELERY_ALWAYS_EAGER setting [http://celeryq.org/docs/configuration.html#celery-always-eager]
comes in handy. It makes celery run the code in process, but will
make sure your code paths work correctly.

I talk about this and more in
my djangocon talk [http://ericholscher.com/blog/2010/sep/10/djangocon-talk/].

Killing long running tasks

On ReadTheDocs [http://readthedocs.org] I would run into
problems with celery tasks never returning. Luckily, celery has a
way to handle this. The
CELERYD_TASK_TIME_LIMIT [http://ask.github.com/celery/configuration.html#celeryd-task-time-limit]
setting lets you set the number of seconds that a task can run
until it is killed. This is nice to make sure that a run-away task
won’t take down all your backend processing.

Use the JSON serializer for interoperability

I was talking on IRC to
Eric Florenzano [http://www.eflorenzano.com/] and he mentioned
that you should use the
json serializer [http://celeryq.org/docs/userguide/executing.html#executing-serializers]
if you want to be able to add celery tasks from other languages.

This allows you to use another language to put a message that looks
like a
celery task [http://ask.github.com/celery/internals/protocol.html#example-message]
in the queue, and it should just work.

Explictly set the number of clients

When you run celery, it defaults to having the number of workers
equal to the number of cores the machine has. If you are running
multiple queue workers on the same machine, it is a good idea to
use less. You can set this with the
CELERYD_CONCURRENCY [http://ask.github.com/celery/reference/celery.conf.html#celery.conf.CELERYD_CONCURRENCY]
setting, or passing -c<num> on the command line.

Running against multiple databases with supervisord

At work we run a bunch of different sites on multiple databases.
When we were figuring out how to deploy celery, we needed a good
way to make sure that celeryd was always running, and we needed
multiple celery daemons for each of our databases. We have written
our tasks to run against multiple sites on the same database in
order to reduce the number of daemons we had to use.

Celery ships with a couple of daemon configurations out of the box,
support for init.d style init scripts, and support for
supervisord [http://supervisord.org/]. We first looked at the
init.d approach, but there didn’t seem to be a good way to have it
run multiple settings files without creating multiple scripts,
which seemed hacky. So we went with superisord for the task. Below
is our configuration, if you are curious.

/etc/supervisord.conf

By default, the conf file is in the top-level /etc/ directory. We
kept it this way, but I kind of wish it was in it’s own directory.
This is basically the exact script that
celery ships with [http://github.com/ask/celery/blob/master/contrib/supervisord/supervisord.conf]

unix_http_server]
file=/tmp/supervisor.sock ; path to your socket file

[supervisord]
logfile=/var/log/supervisord/supervisord.log ; supervisord log file
logfile_maxbytes=50MB ; maximum size of logfile before rotation
logfile_backups=10 ; number of backed up logfiles
loglevel=info ; info, debug, warn, trace
pidfile=/var/run/supervisord.pid ; pidfile location
nodaemon=false ; run supervisord as a daemon
minfds=1024 ; number of startup file descriptors
minprocs=200 ; number of process descriptors
user=root ; default user
childlogdir=/var/log/supervisord/ ; where child log files will live

[rpcinterface:supervisor]
supervisor.rpcinterface_factory = supervisor.rpcinterface:make_main_rpcinterface ;

[supervisorctl]
serverurl=unix:///tmp/supervisor.sock ; use unix:// schem for a unix sockets.

[include]
files = supervisord/celeryd.conf

Then we created a supervisord directory which we included in the
above file (in the last line) that contains the celery specific
configuration. On this machine the only thing that supervisord is
watching is celery, so that has kept our configuration simple.

/etc/supervisord/celeryd.conf

Inside of our celeryd specific configuration we went with mostly
stock options except how we are setting up the
DJANGO_SETTINGS_MODULE. We need to change the environment in
which we are deploying, so that the celery daemon runs against the
correct database.

[program:celery-cms]
environment = PYTHONPATH='/home/code',DJANGO_SETTINGS_MODULE='ljworld.standard'
command=/home/code/django/bin/django-admin.py celeryd --loglevel DEBUG -c2
user=nobody
numprocs=1
stdout_logfile=/var/log/celery/cms_supervisord.log
stderr_logfile=/var/log/celery/cms_supervisord.err
autostart=true
autorestart=true
startsecs=10

[program:celery-weeklies]
environment = PYTHONPATH='/home/code',DJANGO_SETTINGS_MODULE='desotoexplorer.settings'
command=/home/code/django/bin/django-admin.py celeryd --loglevel DEBUG -c2
user=nobody
numprocs=1
stdout_logfile=/var/log/celery/weeklies_supervisord.log
stderr_logfile=/var/log/celery/weeklies_supervisord.err
autostart=true
autorestart=true
startsecs=10

The really nice part about using supervisord is that our fabric
script for deploying changes to celery is just deploying the code
and then running supervisorctl restart celery-cms.

I hope today’s post was useful, and I’m again curious for any other
awesome celery tips!

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Django Testing Mailing List

I have a couple of testing related applications in the Django
community. I don’t have a good way of communicating with the users
of these apps, namely about releases, or helping with support
questions. So I am starting the
Django Testing Mailing List [http://groups.google.com/group/django-testing]
for people that are interested in my testing projects:
django-test-utils, django-crawler, and django-kong.

This is kind of an experiment of a combined mailing list for a
couple of different projects. Hopefully people that are interested
in one will be interested in the others, so we’ll see how it goes.

If you have a testing related app for Django that doesn’t have a
good place to discuss, feel free to make it your home as well.

Note: This is more a place to discuss issues my django
applications. If you are interested in testing, the
Testing in Python [http://lists.idyll.org/listinfo/testing-in-python]
list and the #python-testing IRC channel on Freenode are both great
resources as well.

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Running Hudson matrix builds on multiple machines

When I was setting up the Django Hudson instance, I ran into a
problem that seems like it should be pretty easy to solve. However,
I couldn’t figure out a way. So at this point it’s looking like
we’re going to have to use buildbot to build out what we want
instead of Hudson. Wondering if I missed something obvious, or if
this is a missing feature.

Our setup

We have our builds segmented currently by Django version and
database. So to get something up and going, we have a Django trunk
and 1.2.X build going against sqlite. We use a matrix build to run
this against python 2.4-2.6, which means 3 builds in total for each
Django version.

However,
I can’t find a way to make the matrix build choose the slave to run on based on what version of python it supports.
I want to be able to randomly add slaves to the Hudson
configuration, and have them pick up builds based off of their
capabilities.

The problem

Hudson supports the idea of tagging, so we came up with a
tagging scheme [http://code.djangoproject.com/wiki/BuildFarm#Desiredconfigs]
for the slaves. So it seems that we should be able to tell a test
to run on any slave tagged with the versions of python we want.
Hudson also supports this, but it runs all the tests across all the
different slaves each time. I need it to
have a pool of workers capable of running a set of tests, but run each test on only one of the members of the pool.

I was wondering if we’re doing it wrong, or if other people know
the correct way to run tests across a set of slaves, based on the
capabilities of the slave? This seems like a pretty basic
requirement for people running any kind of sizable Hudson
configuration.

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Using ZNC, an IRC bouncer

I use IRC for work, play, and generic open source questions and
support. I think it’s a pretty integral part of my existence as a
developer. Today I’m going to write about why using an IRC bouncer
makes IRC a ton better and show you how to get one setup.

ZNC [http://en.znc.in/wiki/ZNC]

ZNC is the bouncer that I was recommended when I started, and I
only have good things to say about it. On ubuntu installing ZNC is
really simple.

sudo apt-get install znc-extra

This will pull down ZNC and it’s extra modules which offer you some
nice features. So now that you have ZNC installed, you need to make
a configuration. You can do this with the znc --makeconf
command, which I’ve pasted a session of at the bottom of this post.
However, here is the config that I run now.

Listen = +6666
ConnectDelay = 30

<User eric>
 Pass = md5#blah
 Nick = ericholscher
 AltNick = ericholscher_
 Ident = eric
 RealName = Eric
 QuitMsg = Peace.
 StatusPrefix = *
 ChanModes = +stn
 Buffer = 5000
 KeepBuffer = false
 MultiClients = true
 BounceDCCs = true
 DenyLoadMod = false
 Admin = true
 DenySetVHost = false
 DCCLookupMethod = default
 TimestampFormat = [%H:%M:%S]
 AppendTimestamp = false
 PrependTimestamp = true
 TimezoneOffset = 0.00
 JoinTries = 0
 MaxJoins = 5

 LoadModule = chansaver
 LoadModule = log

 Server = irc.freenode.net +7000

 <Chan #django>
 </Chan>
</User>

Note: This might be from a slightly older version of ZNC, so
you might have to modify this to work on the newest version of ZNC
in the ubuntu 10.10 repos. Using the –makeconf option with the
same answers will also make an up to date conf.

Important options

The Buffer setting is the number of lines to keep in the buffer
when you’re not connected. If you have your ZNC not keep your
buffer, with KeepBuffer = false setting, I tend to keep the
Buffer setting pretty high. You don’t want to miss messages when
you’re disconnected, so it will just stream these messages back to
you when you reconnect.

The other use of ZNC that I know people have is to connect from
multiple clients, like checking IRC on an iPhone. So long as you
have the MultiClients setting set, you can do this and it is
transparent to anyone else in your channels. However, when you
connect, you always want a scrollback of the context of the last
things said. In this case, you’d want to have
KeepBuffer = true, but have a small Buffer playback, so you
don’t spam your phone.

The +6666 on the Listen portion of the config means that it is
listening on port 6666, using SSL. So make sure if you turn on SSL,
your client is connecting with SSL as well.

Good Modules

The modules that I have enabled are the chansaver and log modules.
The chansaver module writes out your ZNC config every time you join
or part a channel, so when you restart your bouncer it will have
the rooms you’re in. The log module logs all the channels your in,
which is nice because it allows you to have comprehensive logs of
your work channels.

ZNC also comes with a webadmin [http://en.znc.in/wiki/Webadmin]
that I have never used, but hear is quite nice. It allows you to
configure everything through a web interface. ZNC has a lot more
power than I’ve shown here, including connecting to multiple
backend servers, having multiple users, inter-user chat, and lots
of other interesting things. Once you’ve gotten hooked, you can
share your server with your friends, and play around with modules.

Using it

So now to connect to your proxy, in your IRC client, instead of
connecting to your normal server (eg. irc.freenode.net 6667), you
would connect to your bouncer instead. This will be running on the
IP and port that you have configured in your ZNC config. My
Limechat [http://limechat.net/mac/] config looks like this:

[image: Limechat Config]
Limechat Config

You should then be able to just connect to that server, and your
client will show all the channels you’re connected to. You can try
logging off and back on a couple of minutes later and see that it
plays back what you’ve missed.

This really changes how you interact with IRC I find, because you
can keep tabs on everything that is going on when you aren’t
connected. I can be in the middle of a conversation, disconnect and
move to a meeting room downstairs, and pick right back up where
I’ve left off.

znc –makeconf session

Here is a copy of the makeconf session I talked about earlier.
Where there is no visual input, it’s just me accepting the
defaults.

eric@Chimera:~$ znc --makeconf
[**] Building new config
[**]
[**] First lets start with some global settings...
[**]
[??] What port would you like ZNC to listen on? (1 to 65535): 6666
[??] Would you like ZNC to listen using SSL? (yes/no) [no]: yes
[**] Unable to locate pem file: [/home/eric/.znc/znc.pem]
[??] Would you like to create a new pem file now? (yes/no) [yes]: yes
[??] hostname of your shell (including the '.com' portion): irc.ericholscher.com
[ok] Writing Pem file [/home/eric/.znc/znc.pem]...
[??] Would you like ZNC to listen using ipv6? (yes/no) [no]:
[??] Listen Host (Blank for all ips):
[**]
[**] -- Global Modules --
[**]
[??] Do you want to load any global modules? (yes/no): yes
[**] +-----------+--+
[**] | Name | Description |
[**] +-----------+--+
[**] | partyline | Internal channels and queries for users connected to znc |
[**] | webadmin | Web based administration module |
[**] +-----------+--+
[**] And 10 other (uncommon) modules. You can enable those later.
[**]
[??] Load global module <partyline>? (yes/no) [no]: no
[??] Load global module <webadmin>? (yes/no) [no]: yes
[**]
[**] Now we need to setup a user...
[**]
[??] Username (AlphaNumeric): eric
[??] Enter Password:
[??] Confirm Password:
[??] Would you like this user to be an admin? (yes/no) [yes]:
[??] Nick [eric]:
[??] Alt Nick [eric_]:
[??] Ident [eric]:
[??] Real Name [Got ZNC?]:
[??] VHost (optional):
[??] Number of lines to buffer per channel [50]: 500
[??] Would you like to keep buffers after replay? (yes/no) [no]:
[??] Default channel modes [+stn]:
[**]
[**] -- User Modules --
[**]
[??] Do you want to automatically load any user modules for this user? (yes/no): yes
[**] +-------------+---+
[**] | Name | Description |
[**] +-------------+---+
[**] | admin | Dynamic configuration of users/settings through irc |
[**] | chansaver | Keep config up-to-date when user joins/parts |
[**] | keepnick | Keep trying for your primary nick |
[**] | kickrejoin | Autorejoin on kick |
[**] | nickserv | Auths you with NickServ |
[**] | perform | Keeps a list of commands to be executed when ZNC connects to IRC. |
[**] | simple_away | Auto away when last client disconnects |
[**] +-------------+---+
[**] And 33 other (uncommon) modules. You can enable those later.
[**]
[??] Load module <admin>? (yes/no) [no]: yes
[??] Load module <chansaver>? (yes/no) [no]: yes
[??] Load module <keepnick>? (yes/no) [no]: yes
[??] Load module <kickrejoin>? (yes/no) [no]:
[??] Load module <nickserv>? (yes/no) [no]:
[??] Load module <perform>? (yes/no) [no]:
[??] Load module <simple_away>? (yes/no) [no]: yes
[**]
[**] -- IRC Servers --
[**]
[??] IRC server (host only): irc.freenode.net
[??] [irc.freenode.net] Port (1 to 65535) [6667]:
[??] [irc.freenode.net] Password (probably empty):
[??] Does this server use SSL? (probably no) (yes/no) [no]:
[**]
[??] Would you like to add another server? (yes/no) [no]:
[**]
[**] -- Channels --
[**]
[??] Would you like to add a channel for ZNC to automatically join? (yes/no) [yes]: yes
[??] Channel name: #django
[??] Would you like to add another channel? (yes/no) [no]:
[**]
[??] Would you like to setup another user? (yes/no) [no]:
[ok] Writing config [/home/eric/.znc/configs/znc.conf]...
[**]
[**] To connect to this znc you need to connect to it as your irc server
[**] using the port that you supplied. You have to supply your login info
[**] as the irc server password like so... user:pass.
[**]
[**] Try something like this in your IRC client...
[**] /server <znc_server_ip> 6666 eric:<pass>
[**]
[??] Launch znc now? (yes/no) [yes]:
[ok] Opening Config [/home/eric/.znc/configs/znc.conf]...
[ok] Binding to port [+6666] using ipv4...
[**] Loading user [eric]
[ok] Loading Module [admin]... [/usr/lib/znc/admin.so]
[ok] Loading Module [chansaver]... [/usr/lib/znc/chansaver.so]
[ok] Loading Module [keepnick]... [/usr/lib/znc/keepnick.so]
[ok] Loading Module [simple_away]... [/usr/lib/znc/simple_away.so]
[ok] Adding Server [irc.freenode.net 6667]...
[ok] Loading Global Module [webadmin]... [/usr/lib/znc/webadmin.so]
[ok] Forking into the background... [pid: 15983]
[**] ZNC 0.092+deb3 - http://znc.sourceforge.net

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Building a Django App Server with Chef: Part 1

Alternate title: Fucking Chef, How does it work?

When I started looking at
Chef [http://wiki.opscode.com/display/chef/Home], I found it
incredibly complex and lacking in fundamental documentation. This
is going to be my experience understanding Chef while setting up a
single server. This strategy can be used across multiple servers,
with a little tweaking.

I’d like to thank Jacob [http://jacobian.org/] for the ideas and
some of the inspiration behind the code and ideas. The code for
this blog post can be found
on github [https://github.com/ericholscher/chef-django-example].
It will be expanded as I write updates.

Today’s code will be using tag
blog-post-1 [https://github.com/ericholscher/chef-django-example/tree/blog-post-1]
in the repo.

Goal

I’m hoping to write a blog series that goes from explaining what
Chef is, to having a working Django server, and to release all this
code so that you can tweak and use it with your own servers. I’ll
be doing this to set up a new and configuration managed server for
ReadTheDocs [http://readthedocs.org/].

There are a
couple of [http://brainspl.at/articles/2009/01/31/cooking-with-chef-101]
other
good chef intros [http://morethanseven.net/2010/10/30/Chef-hello-world.html]
available. However, they only get you to the super basic first step
of setting up the server. Hopefully this series will be more in
depth and useful to actually getting a real server running under
Chef.

Basic terminology

Chef has some basic terminology that you need to understand before
we get into things. I’m going to purposefully leave out a ton of
stuff, because it isn’t really important for me now.

	Cookbook (cookbooks/*)

A cookbook, not surprisingly, contains recipes. With my
configuration, we’re only going to use one cookbook, that has
multiple recipes. This is probably wrong and horrible, but it’s
simple, which is the goal for now.

	Recipe (cookbooks/*/recipes/*.rb)

A recipe is the basic building block of Chef. It is what does the
meat of the work that you want done.

	Resources

A resources is an abstraction that defines a specific piece of your
configuration. It can be a file, a user, or just about anything you
want to talk about on your system.

	Attributes (node.json)

Attributes are just a blob of JSON that Chef uses to pass around
data. It will be (slightly) different for each server that you want
to set up. I really like this approach, because I think a
data-driven approach is the correct way to solve this problem.

Bootstrapping chef

We’ll be running what is called
chef solo [http://wiki.opscode.com/display/chef/Chef+Solo]. This
means that chef will be run independently of a server, and just
execute on our one host. This seems to be the easiest way to get
things running.

When you first run chef-solo, it will look for a solo.rb
file. The
documentation about configuring chef-solo [http://wiki.opscode.com/display/chef/Chef+Solo#ChefSolo-ConfigureChefSolo]
does a decent job of explaining this. By default it looks in
/etc/chef/solo.rb, so lets go ahead and use that. It has 2 required
fields, a cookbook_path and json_attribs. cookbook_path
tells chef where to find the “cookbooks” it uses to run your code,
and json_attribs tells it where to load in your data
dictionary.

Note: The docs say that file_cache_path is required, but it
just defaults to /var/chef/cache.

For simplicity, we’re going to keep our cookbooks and json data
file in /etc/chef. On my local machine I keep everything in a
~/projects/chef directory, and then sync that to the remote
box.

In production you’ll probably want to set up your remote server to
pull from a repository somewhere, so that you can have a stable
deployment base, but again, syncing from the local filesystem is
simple and works.

Bootstrapping your new server

I’ll be using a fabric [http://docs.fabfile.org/] script to run
the commands on a remote server, which also allows me to run them
again later on a new machine in an automated fashion. So this is
the first simple script that we’ll use to bootstrap our new server,
fabfile.py:

from fabric.api import env, local, sudo
env.user = 'root'
env.hosts = ['204.232.205.196']

env.chef_executable = '/var/lib/gems/1.8/bin/chef-solo'

def install_chef():
 sudo('apt-get update', pty=True)
 sudo('apt-get install -y git-core rubygems ruby ruby-dev', pty=True)
 sudo('gem install chef', pty=True)

def sync_config():
 local('rsync -av . %s@%s:/etc/chef' % (env.user, env.hosts[0]))

def update():
 sync_config()
 sudo('cd /etc/chef && %s' % env.chef_executable, pty=True)

A couple notes: the chef executable is version-dependent, but
that’s because I don’t know enough ruby to query it dynamically.
You will also need to change the value of the env.hosts to a server
that you actually control.

This will install the ruby dependencies, and get chef up and
running for you. You’ll need to install fabric
(pip install fabric, presumably in a virtualenv), and then run
fab install_chef to get it up and running. Then you can go
ahead and run fab sync_config to get your chef configuration
onto the remote server.

Now we need to go ahead and figure out how to make chef actually do
something. You’ll see in the cookbooks/main/recipes/default.rb
file we have a simple package declaration. This simply means to
make sure that the package is installed on the remote system. This
is as simple as it gets, so lets go ahead and run it. With the
fab update command, it will sync your local directory, and run
chef on the remote server.

-> fab update
[localhost] run: rsync -av . root@204.232.205.196:/etc/chef
[204.232.205.196] sudo: cd /etc/chef && /var/lib/gems/1.8/gems/chef-0.9.12/bin/chef-solo
[204.232.205.196] err: stdin: is not a tty
[204.232.205.196] out: [Tue, 09 Nov 2010 01:42:01 +0000] INFO: Setting the run_list to ["main::default"] from JSON
[204.232.205.196] out: [Tue, 09 Nov 2010 01:42:01 +0000] INFO: Starting Chef Run (Version 0.9.12)
[204.232.205.196] out: [Tue, 09 Nov 2010 01:42:01 +0000] INFO: Installing package[curl] version 7.21.0-1ubuntu1
[204.232.205.196] out: [Tue, 09 Nov 2010 01:42:04 +0000] INFO: Chef Run complete in 2.574963 seconds
[204.232.205.196] out: [Tue, 09 Nov 2010 01:42:04 +0000] INFO: cleaning the checksum cache
[204.232.205.196] out: [Tue, 09 Nov 2010 01:42:04 +0000] INFO: Running report handlers
[204.232.205.196] out: [Tue, 09 Nov 2010 01:42:04 +0000] INFO: Report handlers complete

You now have Chef running on your server. That was pretty easy,
eh? For tomorrow’s lesson, we’ll be making it actually do
something, like installed nginx and gunicorn, and keeping track of
config files.

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Building a Django App Server with Chef: Part 2

Alternate title: Actually doing something useful.

Yesterday [http://ericholscher.com/blog/2010/nov/8/building-django-app-server-chef/]
we covered the basics to getting started with Chef. You should have
a remote server configured with chef, and have curl installed! Now
lets go ahead and get some useful bits for your Django
application.

What we’ll need

So this is going to be based around the way that I set up my
servers, so if this is different than you, I’m sorry. However, I
think it is a pretty solid way of managing them. A lot of the ideas
here are stolen from Travis [http://traviscline.com/] when he
set up the server for Pypants.

So lets assemble a list of things we’re going to want in order to
get a super basic Django configuration running:

	A user to run our code as and who’s home directory we’ll store
the data.

	A basic global python ecosystem, including setuptools and pip

	A virtualenv to store all the project-specific packages and code
in

	A copy of the project that we’ll be running

Let’s get started.

The finished code for today is located on github, with the
tag blog-post-2 [https://github.com/ericholscher/chef-django-example/tree/blog-post-2].
It is a copy of the completed steps, so feel free to peek through
that and come back here for clarification (or to ask questions).

Setting up our user

For RTD [http://readthedocs.org/], I run everything under the
user docs. So we’ll go ahead and set up that user so that we can
get our site set up. We’re going to go ahead and replace our
“default” recipe, because right now it isn’t doing anything much
useful. The relevant part is below:

cookbooks/main/recipes/default.rb

node[:base_packages].each do |pkg|
 package pkg do
 :upgrade
 end
end

node[:users].each_pair do |username, info|
 group username do
 gid info[:id]
 end

 user username do
 comment info[:full_name]
 uid info[:id]
 gid info[:id]
 shell info[:disabled] ? "/sbin/nologin" : "/bin/bash"
 supports :manage_home => true
 home "/home/#{username}"
 end

 directory "/home/#{username}/.ssh" do
 owner username
 group username
 mode 0700
 end

 file "/home/#{username}/.ssh/authorized_keys" do
 owner username
 group username
 mode 0600
 content info[:key]
 end
end

node[:groups].each_pair do |name, info|
 group name do
 gid info[:gid]
 members info[:members]
 end
end

There’s a lot of stuff going on here, so lets go over it. First you
might notice that there’s this node variable, the node data
structure is the JSON that you have in your node.json file. It is
looping over the keys and values with ruby’s each_pair and pair
functions.

The base_packages bit is a cool example of the power of the chef
configuration. We have a list of packages that we want to install
in our Attributes, and we’re looping over them and setting using
the package Resource.

I realize I skipped over the run_list part yesterday, but it
basically is just a list of recipes to run. Each of the resources
in the default.rb file should be pretty self explanatory. The
Chef Resource Documentation [http://wiki.opscode.com/display/chef/Resources]
is really comprehensive, and will probably be the most referenced
document that you use. The main resource’s that we used were
group, user, file, directory, let’s take a look at the
User [http://wiki.opscode.com/display/chef/Resources#Resources-User]
declaration in particular.

Everything there should be pretty obvious, as it’s the information
that goes into /etc/passwd for the user. However, the supports
keyword isn’t obvious at first. This is part of the
Common Attributes [http://wiki.opscode.com/display/chef/Resources#Resources-CommonAttributes]
that can be set on all Resources. It’s a way of passing along
configuration options to the Resource. manage_home actually just
makes it so that the users home directory is created when the user
is created.

So we’re going to have to go ahead and put some data in there for
it to work with. Our node.json will now look like this:

node.json

{
 "run_list": ["main::default", "main::python", "main::readthedocs"],
 "base_packages": ["git-core", "bash-completion"],

 "users": {
 "docs": {
 "id": 1001,
 "full_name": "Docs User",
 "key": "ssh-rsa key-goes-here eric@Bahamut"
 }
 },

 "groups": {
 "docs": {
 "gid": 201,
 "members": ["docs"]
 }
 }
}

Adding a Basic Python Environment

Now lets go ahead and add a python recipe to build out some basic
python stuff that we’ll be needing.

cookbooks/main/recipes/python.rb

node[:ubuntu_python_packages].each do |pkg|
 package pkg do
 :upgrade
 end
end

System-wide packages installed by pip.
Careful here: most Python stuff should be in a virtualenv.

node[:pip_python_packages].each_pair do |pkg, version|
 execute "install-#{pkg}" do
 command "pip install #{pkg}==#{version}"
 not_if "[`pip freeze | grep #{pkg} | cut -d'=' -f3` = '#{version}']"
 end
end

Additions to node.json

"ubuntu_python_packages": ["python-setuptools", "python-pip", "python-dev", "libpq-dev"],
"pip_python_packages": {"virtualenv": "1.5.1", "mercurial": "1.7"},

Here we’re adding some global packages that we need. We’re going to
install setuptools and pip so that we can install further python
packages. python-dev and libpq-dev are so that we have the headers
for libraries that need to compile against postgres and python.
We’ll also be installing virtualenv and mercurial globally so that
we can create our virtualenv and install packages from mercurial.

Creating a virtualenv

We’re going to introduce the first new Chef concept here, which is
called a
Definition [http://wiki.opscode.com/display/chef/Definitions].

	Definition (cookbooks/*/definitions/*.rb)

A definition is a custom Resource that you build to abstract a set
of operations. Pretty simple

This is a definition that
Jacob published [https://gist.github.com/612395] and then I
updated to make the permissions correct. It allows you to set up a
virtualenv:

cookbooks/main/definitions/virtualenv.rb

define :virtualenv, :action => :create, :owner => "root", :group => "root", :mode => 0755, :packages => {} do
 path = params[:path] ? params[:path] : params[:name]
 if params[:action] == :create
 # Manage the directory.
 directory path do
 owner params[:owner]
 group params[:group]
 mode params[:mode]
 end
 execute "create-virtualenv-#{path}" do
 user params[:owner]
 group params[:group]
 command "virtualenv #{path}"
 not_if "test -f #{path}/bin/python"
 end
 params[:packages].each_pair do |package, version|
 pip = "#{path}/bin/pip"
 execute "install-#{package}-#{path}" do
 user params[:owner]
 group params[:group]
 command "#{pip} install #{package}==#{version}"
 not_if "[`#{pip} freeze | grep #{package} | cut -d'=' -f3` = '#{version}']"
 end
 end
 elsif params[:action] == :delete
 directory path do
 action :delete
 recursive true
 end
 end
end

As you can see, it takes a bunch of arguments, then just wraps up a
bunch of Resource definitions in a nice little package. There is a
little bit of magic with the pip freezing things, but it’s
basically just how we’re checking to make sure that a package isn’t
instead before we install it. We are using only using the
directory and execute Resources here.

Now we’re going to use this virtualenv Definition, and create the
home virtualenv for our site. I like to keep my virtualenv’s in
~/sites/<domain>, so this will go into
/home/docs/sites/readthedocs.org/. Since this is becoming
specific to the site we’re building, it’s going to go into a
readthedocs recipe:

cookbooks/main/recipes/readthedocs.rb

directory "/home/docs/sites/" do
 owner "docs"
 group "docs"
 mode 0775
end

virtualenv "/home/docs/sites/readthedocs.org" do
 owner "docs"
 group "docs"
 mode 0775
end

This will set up a basic virtualenv in our directory.

Getting our site set up

To get our site set up, we need to pull in the source code, and
make sure our virtualenv has all the requirements. This code is a
little bit hacky, and could probably be abstracted out a bit, but
it will work for now. We’re going to go ahead and add some things
to our readthedocs Recipe.

Additions to cookbooks/main/recipes/readthedocs.rb

directory "/home/docs/sites/readthedocs.org/run" do
 owner "docs"
 group "docs"
 mode 0775
end

git "/home/docs/sites/readthedocs.org/checkouts/readthedocs.org" do
 repository "git://github.com/rtfd/readthedocs.org.git"
 reference "HEAD"
 user "docs"
 group "docs"
 action :sync
end

script "Install Requirements" do
 interpreter "bash"
 user "docs"
 group "docs"
 code <<-EOH
 /home/docs/sites/readthedocs.org/bin/pip install -r /home/docs/sites/readthedocs.org/checkouts/readthedocs.o
rg/deploy_requirements.txt
 EOH
end

I like to have my runtime files in the venv/run directory, so
we’ll go ahead and create that directory. Then comes the fun part.

We are checking the Readthedocs source out of github with the
git [http://wiki.opscode.com/display/chef/Deploy+Resource#DeployResource-Examples]
Resource. Chef only supports git and svn as far as I can tell, so
luckily I’m using git.

Then we’re going to install from the pip requirements file. This is
using the
script Resource [http://wiki.opscode.com/display/chef/Resources#Resources-Script],
which allows you to inline a bash, ruby, python, or more script
inside your Recipe. This is using a hard coded bash script to
install the requirements, which sucks, but will work for now.

Note: Chef appears to buffer output and not show itself as
doing anything when running the script Resource here, so it will
look like your build will hang while it installs your pip
requirements file for the first time.

Done for now

Alright, this post has gotten long enough, so we’re done for today.
But we’re in a pretty awesome spot, I think. We now have our app
server set up with a runnable version of our code. You can go ssh
in and play around, you should be able to run simple manage.py
commands inside the virtualenv and whatnot (after a syncdb).

Tomorrow we’ll talk about deploying our code with Nginx and
Gunicorn. I’ve been having trouble with Upstart, so we might switch
our deployment to Supervisord, but we’ll see how it goes.

Don’t forget to check out the finished code
on Github [https://github.com/ericholscher/chef-django-example/tree/blog-post-2]
to see the actual running examples.

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Django now has fast tests

As of
Changeset 9756 [http://code.djangoproject.com/changeset/9756],
Django’s test suite is A HELL OF A LOT FASTER. This was one of the
1.1 Features [http://code.djangoproject.com/wiki/Version1.1Features]
and probably the one I was looking forward to the most. Django Unit
Tests now run inside of a transaction.

Karen Tracey did most of the work on this finishing one, and we owe
her a huge thanks, and a lot of our time :). Her commit message
sums up the work better than I can.

Fixed #8138 -- Changed django.test.TestCase to rollback tests (when
the database supports it) instead of flushing and reloading the database.
This can substantially reduce the time it takes to run large test suites.

This change may be slightly backwards incompatible,
if existing tests need to test transactional behavior,
or if they rely on invalid assumptions or a specific test case ordering.
For the first case, django.test.TransactionTestCase should be used.
TransactionTestCase is also a quick fix to get around test case errors
revealed by the new rollback approach, but a better long-term fix
is to correct the test case. See the testing doc for full details.

Many thanks to:
* Marc Remolt for the initial proposal and implementation.
* Luke Plant for initial testing and improving the implementation.
* Ramiro Morales for feedback and help with tracking down a
 mysterious PostgreSQL issue.
* Eric Holscher for feedback regarding the effect of the
 change on the Ellington testsuite.
* Russell Keith-Magee for guidance and feedback from beginning to end.

The amazing thing is that you don’t have to do anything in order to
get the benefit from this change. People’s test suites will now be
running about 8-12x (ed: was 40x, but that was a bit much) faster
than before. Depending on whether you have a larger portion of
doctests or unit tests, you will get different speedups. The
Database backend you are using is also import; MySQL/MyISAM doesn’t
support transactions, and tests running in SQLite were already much
faster, so they don’t get as much of a percentage gain.

Ellington’s test suite, which was taking around 1.5-2 hours to run
on Postgres, has been reduced to 10 minutes. I tested changing some
of our more expensive doctests to unit tests (and thus getting
transaction support), and it looks like we can get our suite to run
in 3-4 MINUTES.

Prior to this change, before every doctest or unittest test case
was run, Django would do an entire flush and syncdb of the
database! This was time consuming, and not totally necessary. Now
all unit tests are wrapped in a transaction. This is a much faster
operation on the DB, and that is where the speed gains come from.

People using doc tests aren’t having their tests run inside a
transaction, but that is the same behavior as before the change. If
you are curious more about the implementation of this patch, there
is a huge discussion on
ticket 8138 [http://code.djangoproject.com/ticket/8138] that
shows some of the interesting things encountered during this
process.

This patch applies cleanly to Django 1.0 as far as I know, so if
you are running tests on any kind of large code base I would
recommend either applying the patch in #8138, or upgrading to
trunk. This also means that you have one less excuse for not
writing or running tests ;)

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Review of Pro Django by Marty Alchin (1/2)

5 second review:
Reading this book will make you a much better Django Programmer.

In full disclosure, I was sent a review copy of this book by the
publisher, but I had already pre-ordered it on Amazon, and the copy
I am reviewing is that copy. The review copy is now the office copy
:)

I will do an overview, and then a specific breakdown of what I
thought after reading each chapter. This is currently only the
first half of the book, but the book is already worth it’s price
(perhaps in gold). This covers chapters 1-6, which is basically the
normal URLs/Models/Views/Templates stuff. The later sections appear
to cover more specialized and advanced use cases. You can
download the table of contents [http://www.apress.com/book/downloadfile/4247]
also.

Also note, that you can see my further reviews and some other
peoples over on
Readernaut [http://readernaut.com/books/952/notes/]

Overview

Pro Django is certainly not for the beginner. It assumes a pretty
decent amount of Django experience (or at least the ability to
learn/reference it easily). I think that this is a good thing,
because it doesn’t get bogged down in silly details and
explanations when what we want is upper level content. If you have
been doing Django stuff for a couple months, I think this book is
amazingly good at pushing you to the next level of knowledge in the
field.

I certainly recommend reading James Bennett’s Practical Django
Projects (once version 2 gets released) before this one, as it is
an easier introduction. These two books together provide an amazing
1-2 knockup punch to getting you to be a great Django developer.
Now onto the review.

Chapter 1: Understanding Django

This chapter goes over the basics of Django and the philosophy that
it has. It is a great introduction into how to be a good member of
the Django community. It is available for free on the
Apress website [http://www.apress.com/book/downloadfile/4246],
and I recommend reading it, because I felt inspired by the
prologue, and I think that Marty explains the value of the
community around Django very well.

Links from the books pages are provided as links from
prodjango.com, which is nice at first, but the obfuscation of the
URLs is a pain later in the book. It is used as a way to hide
information (“The django irc channel”, with a link) instead of
#django in irc.freenode.net. Also, I have read some of the URLs
linked to, but knowing where they go helps me decide if i need to
read them.

Chapter 2: Django is Python

With one of the best descriptions that I have read of metaclassing
in python, this chapter starts off guns a-blazing. It tries to show
some of the more advanced Python features that Django uses, and
stresses that Django is merely Python. I loved the explanation of
the gentlemen’s agreement on interfaces, including file-like
objects. The explanation of metaclassing is finished up with a
great example of implementing a plugin system for a password
validator. The code ends up being around 40-50 lines, flowing
through my brain like a river, and beautiful. It was also explained
in a way that allowed me to see the abstract value of the ideas,
and not simply how it is useful in this specific implementation.

It also includes a really heady implementation of decorators that
blew my mind a little bit. With my current intermediate level of
python knowledge, it provided a reference for things that I mostly
knew, and went into depth in the parts that were in need of it. A
great start to the book. As of page 45, my brain is already going
full throttle and I’m looking forward to what this book has in
store.

Chapter 3: Models

I found this chapter to be a little less amazing than the previous,
but still solid. It didn’t quite flow as well for me, and I had to
think about things a lot more. I didn’t have a great understanding
of how all of the subject matter fit together. This might just be
the fact that I’m not as acquainted with the topics.

It has a cool example of creating a field that stores pickled data
and returns it as a normal object. As the chapter progressed the
value of the explanations earlier in the chapter start to gel a
bit, but not totally. I think that this is one that re-reading, at
least for me, will be really valuable after I’m finished. It
provided a great reference to all of the different fields, and why
we should care about them. I really like the continuing theme of
“this is a brief explanation of what X is, and this is an in depth
explanation of why you should care”

Chapter 4: Urls and Views

This chapter does a good job of showing how URLs and Views are
inextricably linked. Your URLConf basically just hands off data to
views, and it goes over all the interesting things that you can do
in this space. It flowed well, was just the right length, and left
me really appreciating the value of decorators around views.

The concept of using a decorator on the view function in the
URLConf, instead of around the view definition, is novel. The
ability to manipulate the arguments to the view in the URLConf
file, returning objects instead of strings to the views is very
powerful. Using decorators to abstract boilerplate is a really
powerful pattern.

The explanation of views and making them more generic was good, but
I already knew it from Practical Django Projects. This obviously
lead into generic views. He also discussed using a Class as a view
(and the downside of trying to reverse() it), but it was lacking a
discussion of Class-based Generic Views which I thought was coming.
This is going to be implemented by 1.2, so it might have been a
good time to at least mention it.

Chapter 5: Forms

This chapter is not as interesting to me, because I don’t plan to
be doing a lot of work on front end forms. However, there is still
a great explanation of the way that forms work on the backend
(almost exactly like models). The harsh warning about verifying
user input is good, because user input is indeed evil.

In example at the end of the chapter, Marty goes through how to
create a form that can be saved and restored, no matter what the
contents. It ends up being implemented in a decorator, which blew
my mind. All you have is a view that handles a valid form, and a
decorator gives you the ability to save and resume that same form,
simply by posting an md5hash to it. Pretty Crazy. It also goes into
Widgets and how to create your own to display forms. There is a bit
of a lack of how to include Javascript and CSS inline in your
forms, but talks about how to embed custom attributes. Also, there
is no mention of creating forms from Models! I feel that this is
probably one of the most common operations I do with forms. This
might have been excluded because it is already well known and
un-interesting.

Chapter 6: Templates

This chapter explains one of the simpler parts of Django. It is
pretty neat that you can understand pretty much how the entire
template system works in a chapter of about 20 pages. I knew a
decent bit about it before, but this chapter certainly made my
knowledge more concrete.

There is a really neat example at the end of the chapter about
writing themes for a website. It goes through a really in depth
usage of the Template system, including introspecting nodes. I’ve
needed to do something like this for my own stuff, and this example
is invaluable. It also talks about how to easily create tags and
filters by yourself.

At this point I’m at page 163 of around 300. There is still a ton
of great knowledge in this book, and I’m excited to read the rest
of it.

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Encouraging Web Interaction for University Students

So today I would like to tell a story that really shows why the
internet is an amazing thing. This month’s articles on
A List Apart [http://www.alistapart.com/issues/276] focused on
web education for universities and I’d like to share a story about
one way to empower students and show them the power of the
internet. Teaching people to create for the internet is a great
goal, but teaching people the power of the internet by example is
something amazing as well. It is hard to motivate people to create
things on the internet without the understanding of how that has
value.

So this all started (like many things these days) on Twitter. I got
a tweet [http://twitter.com/jimgroom/status/1127213955] from a
professor at my old school [http://http://umw.edu], Jim Groom.
It linked to an article from a student in a Graphic Novels class,
who had a blog post about garfield. His post was about
garfield dying [http://teaching.zachwhalen.net/comics/content/when-funnies-arent-so-funny-anymore-or-week-garfield-died],
and had some really great analysis of the content. It was a
genuinely interesting piece, and something that I thought that the
rest of the world should see.

In a normal context, this work simply would have been given to a
teacher, and I would never have seen it. Luckily I know people that
are still at the school, who happened to link to it, because it
happened to be online. The university actually has a thriving
blogging system they are pioneering (which is linked from the front
page!). Students think that these blogs they are publishing are
silly, and there is little reason for it. Once things are online,
they are searchable, and others can seek out the valuable content
created by students.

This story doesn’t end there though. I submitted the blog entry by
the student to
Hacker News [http://news.ycombinator.com/item?id=438831] and
Reddit [http://www.reddit.com/r/reddit.com/comments/7qj4y/when_the_funnies_aren_so_funny_anymore_or_the/].
I figured that people like me read these sites, and would
appreciate it as well. I was correct. The article stayed on the
front page of Hacker News for over a day, and gathered 51 votes
(which is very high) and got 15 up votes on reddit.

This lead to a surge of traffic to the post! This information was
being spread and a student was quickly learning the value of
publishing things online. In a
follow up post [http://bavatuesdays.com/when-garfield-dies-people-read/],
Jim says that the post was viewed over 7,000 times in 3 days!
Imagine being the student when he is told that something he wrote
for a class was viewed by more people than the entire student body
of the school you attend! How Impowering!

If more people had experiences like this, I think that a lot of
people would find more value in learning how to create things on
line. I can’t imagine that the student isn’t now extremely curious
about how all this happened, and how he can make it happen again.
It breeds curiosity and excitement over the internet, instead of
wonder and fear. These are the kind of experiences that we should
be fostering.

I agree that you should go volunteer and talk to students in
classes that are already interested in the subject. However, it is
much more important to show people the value of spreading
information. Show the power of the internet through example (this
one or others), and foster creativity and the ideals of public
information. Things on the internet are forever, and that is scary
if it’s a picture of you drunk; but if it is knowledge that you
created, then that is priceless.

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Django Conventions Project Update

So about a month ago I
started [http://ericholscher.com/blog/2008/dec/3/starting-django-conventions-project/]
a project [http://ericholscher.com/projects/django-conventions/]
on my blog called the Django Conventions Project. It was an attempt
to document and record conventions that are used across the
community. Conventions are a great thing, with Python and Django
relying on them a great deal. Things like private methods being
underscored aren’t enforced on a language level, but are more of a
gentleman’s agreement.

I think that conventions can indeed have a lot of value, but they
are hard to discover without practice. I think that embodying this
knowledge in documentation can be extremely valuable. It proves
useful for people that are just starting to kind of establish
themselves in a code base. It is also useful for more advanced
people as a reference and to make sure they are following them. I
know that I learned about a few new ones when I started the
project.

I got around 20 comments, and people seemed really energized when I
posted last time, so I think people are genuinely interested. In
hindsight, I should have created a source repo with
Sphinx [http://sphinx.pocoo.org/index.html] at the beginning and
started accepting patches. Brian Rosner [http://oebfare.com/] is
involved in Pinax, which has these conventions and standards as a
stated goal as well. He created a
django-reusable-apps-docs [http://github.com/brosner/django-reusable-app-docs/tree/master]
github project for these to live. So I went ahead and
ported [http://github.com/ericholscher/django-reusable-app-docs/commit/abb86dbdae5490c2a22dbdc18bd63aad98bae2ea]
my HTML docs over to
my fork [http://github.com/ericholscher/django-reusable-app-docs/tree/master]
of that project on Github.

Please feel free to branch the repo and submit patches/pull
requests back to me. Also, feel free to join the
django-hotclub mailing list [http://groups.google.com/group/django-hotclub]
which was created for discussion about reusable apps. The
#django-hotclub or #pinax channel on Freenode is also a good place
to find us and talk about reusable apps in real time.

Brian has a mirror of his repo updating every 10 minutes to
http://appdocs.oebfare.com/.. I have a
mirror of my github repo [http://ericholscher.com/projects/reusable-app-docs/]
up on my site as well, updating hourly. The eventual plan for these
docs is to make it into the Pinax or Django Official documentation.
I think that they can probably go into the Pinax documentation once
we clean them up a little bit, and I don’t know if this is quite
something that belongs in Django docs. So I invite everyone to come
discuss what the conventions should be, contribute your own, and
lets try and make some great reusable apps.

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Using rsync with django

Just a quick warning/tip on using Django with rsync, for other
people pulling their hair out later.

When you use rsync a good way to get a directory is using
rsync -aCq, which means recursively, quietly, move a directory
ignoring common files. The -a command means ‘archive’; keep
permissions and as much data about the files as possible. We use -C
because it ignores .pyc and .svn files. However, in the list of
included files is ‘core’, so that you don’t move over core dumps.

Django however has a core directory inside of it, and using -C
causes rsync to ignore that directory. So we ended up using the
rsync command like so:

rsync -aCq --include=core

Hopefully this saves people some time trying to rsync Django in the
future. I’d be curious what other rsync commands that people use
for moving around django and/or other files.

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Incredibly useful SSH flag

So at work we have a lot of different django environments,
scattered across varies servers. All of this information is kept in
a central resource. We have the pythonpath, settings file, and the
remote server that the client is on. So every time that I want to
go do work on a different site, I have to ssh into that server, set
the PYTHONPATH and DJANGO_SETTINGS_MODULE environmental variable,
and then do what I want to do. This is not a huge deal, but it is
annoying when you’re doing it 10-20 times a day.

So I went along and tried to figure out the best way to handle this
situation. One of the popular ways to achieve this type of
functionality is a simple shell script on the remote client, that
sets the environment. You ssh into the client, change into the
clients directory, and source it into bash to get into your
environment. This didn’t really solve my problem, because it’s
basically what I was already doing.

It would be really nice to be able to run an ssh command, to the
remote server, and have it executed. SSH has this ability, simply
by passing a command after your connect string.

$ ssh ericholscher.com uptime
19:11:28 up 69 days, 21:29, 1 user, load average: 0.00, 0.00, 0.00

However, this simply executes and returns. I want to be able to set
up my environment on the remote side. With the -t command to
SSH, this allows you to do exactly that. It sets up a psuedo-tty on
the remote side, which then lets you execute commands! So you can
do something like this:

$ ssh ericholscher.com -t DJANGO_SETTINGS_MODULE=test.settings bash
eric@Odin:~$ env |grep DJ
DJANGO_SETTINGS_MODULE=test.settings

$ ssh ericholscher.com -t PYTHONPATH='$HOME/Python' django-admin.py dbshell
SQLite version 3.5.9
Enter ".help" for instructions
sqlite>

$ ssh ericholscher.com -t PYTHONPATH='$HOME/Python' django-admin.py shell
[..ipython startup truncated..]
In [1]: import django

In [2]: django.VERSION
Out[2]: (1, 1, 0, 'alpha', 0)

Note that the PYTHONPATH variable is quoted. This is because I am
using the $HOME variable, if you don’t quote it, it will be
evaluated on the client side. If you quote it, it gets passed to
the server to be set.

I have written a datastore backend that keeps all of my sites
settings and pythonpaths (along with other information), and then I
wrote a simple wrapper script around that. I will hopefully be
releasing this code in the near future, but it allows me to do
things along these lines.

$./assume.py production my_site shell
$./assume.py production test_project shell
$./assume.py staging my_site dbshell
$./assume.py local my_site syncdb

and end up in the correct place.

A really neat part of this is that when you do something like
dbshell, you are sent to the remote site, and you can perform an
action. However, when you leave that command, you are brought back
to the local environment that you were already working in. This
makes it really easy to be able to do simple one off actions on a
remote site (like fixing a bug). This comes up a lot at work, eg:
someone is reporting X on server Y, can you please check the
database over there really quick.

This gives you a lot of value because you are connected to the
database with the credentials in the settings. It really allows you
to abstract the knowledge that is in your settings files and build
commands around them. Any custom management commands that are
defined on the remote server are also really easy to activate as
well. This allows you to think “I need to reindex the search on
client Z”, you simply do something like ./assume.py Z reindex,
and then go on about your previously scheduled activity. You don’t
have to think what server the client is running on, what version of
django, where the code lives, or anything like that.

I’d love to hear other ideas that people have for this kind of
system. I think that a simple reusable app that keeps track of your
different servers and commands would be really neat and useful.
Perhaps integrating it into Fabric or something would be possible
as well.

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Automatically apply patches from Django’s (or any) Trac

Lately I’ve been delving into Django development a bit more, and
applying people’s patches has been a bit of a hassle. You know you
want to apply someones patch, but there are about five steps in
between you and applying their patch to your source tree.

So I’d like to present trac_patch.py, which allows you to apply a
patch from Django’s trac automatically. It is posted on github, so
I encourage everyone to fork it and modify it to fit your own
workflow. This was done in about 2 hours, so it’s still pretty
rough. Also note, that this should work with a small modification
on just about any trac install out there.

I threw a few features in that were useful for my development
workflow. You can easily create a new git branch automatically with
the name of the patch that you’re applying. You can apply and
revert a patch. It also has a mode where you can confirm the ticket
you’re looking at, and choose which of the patches on the ticket
you wish to apply to your code.

You can use it by default if you’re in your current top-level
django directory (or where ever you want the patches applied).
However, there is a django_src variable in the code that you
can set and then it will work from anywhere.

I’ll paste in the modules docstring below, so you see some examples
of it in action.

Description::

Simple utility to grab and apply a Django trac ticket.
It could in theory be used for any trac installation.

Usage:: trac_patch.py [ticket_num]

 -h, --help show this help message and exit
 -r, --reverse Reverse the patch
 -g, --git Make a git branch
 -a, --ask Make a git branch

Examples::
 trac_patch.py [ticket_num] [-r]

 #Apply patch 6378
 trac_patch.py 6378

 #Reverse patch 6378
 trac_patch.py 6378 -r

 #Create a git branch and apply patch
 trac_patch.py 6378 -g

 #Confirm patch filename and ticket filename
 trac_patch.py 6378 -a

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Google Summer of Code

It’s that time of year again, and the
Google Summer of Code [http://code.google.com/soc/] is happening
again. This year Django will be applying again, and there is
currently a
Wiki page [http://code.djangoproject.com/wiki/SummerOfCode2009]
on the Django wiki devoted to ideas and people who want to
volunteer to help mentor. I think this is a great opportunity for
students, mentors, and the projects involved. It is a really neat
learning experience. Even if you can’t participate, it’s a good
chance to put ideas up that some enterprising student might pick up
and run with.

Last year had some really successful work done, with Django’s
Aggregation [http://docs.djangoproject.com/en/dev/topics/db/aggregation/]
framework,
F Expressions [http://docs.djangoproject.com/en/dev/topics/db/queries/#filters-can-reference-fields-on-the-model],
and a
revamped comments framework [http://docs.djangoproject.com/en/dev/ref/contrib/comments/]
all coming out of last years efforts!

This is your time to really help give back to the community and
help some neat, innovative work get done at the same time. You can
also show a student the value and fun in open source work. The
focus on SoC is in new feature development, so it’s an exciting way
to hopefully get your pony into Django. So go add some ideas to the
wiki or volunteer to mentor if you have the time and knowledge.
Most of all if you’re a student, apply! This is a really great
opportunity that Google provides you, you get paid, and you get to
help make something amazing!

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Twitter Spam

I keep hearing people talking about how twitter is going to be over
run with spam now that it is becoming mainstream. I really don’t
understand this viewpoint, and will take time here to outline what
they could be talking about, and what can be done.

This is in reply to
http://www.twine.com/item/123c9051b-g8/can-twitter-survive-what-is-about-to-happen-to-it
specifically, but these ideas have been mentioned over and over.

Short Version:
We need to stop worrying about spam on twitter, and start worrying about all the cool stuff we can make.

Kinds of Spam

“Hypertweeting”

A person you are following is tweeting too much? How is that spam?
Simply unfollow them. This is one of the big ones I don’t
understand people complaining about. It’s OPT IN to follow people;
if you don’t like what they say, unfollow them!

Hashtag Spam

The current implementation of hashtag spam is indeed a problem,
because it is a publish and not a follow model. So anyone can
include a #hashtag and it will get picked up by a hashtag
aggregator. This is the common problem of broadcast mediums. It can
be solved filtering hashtags to only certain users, or some other
kind of grouping concept. (A twitter account that retweets a
hashtag only from the people it follows, for example). You could
also do the filtering on the web end, showing only hashtags from
user X and Y.

This seems like a problem that could be solved by the hashtag
aggregators. Currently they are just dumb aggregators, and adding
relevancy would probably be easy. This also screams out as an area
where
Bayesian Filtering [http://en.wikipedia.org/wiki/Bayesian_spam_filtering]
would be useful, since you have a tag that is presumably about a
topic.

@reply Spam

This is legitimate. If a spammer gets on twitter and @replies your
account, it will show up in your timeline. However, that spammer
can only @reply 1 person a minute, and that kind of activity should
be really easy for twitter to take care of. Alternatively, twitter
could implement an option where you only receive @replies from
people that you follow (like the settings to see their @replies to
other people). This issue can also be solved in a client by
separating @replies you get from people you follow, and those that
you don’t.

All in all, this is not a very worrisome method of spamming, and if
it became used, it would statistically almost never happen to you.

Notification Overload

Again, this is the same as the “Hypertweeting argument”. I follow
@slicehoststatus [http://twitter.com/slicehoststatus] because it
is just updates about my connectivity. They have a @slicehost
account that is more customer service oriented that I don’t care
about. Services will have logical separation between their feeds or
they won’t be used.

Solutions

The post does mention some good solutions to the problem. I will
address my thoughts on those here as well.

Number of Followers as a Filter.

This seems likely to be gamed, and a trivial filter. This might be
useful when combined with other metrics, such as how long a user as
been on the site, how many people they are following (and have
followed!). This is where the idea of metadata being important
comes in.

Re-Tweeting Activity as a Filter.

Perhaps, but this needs to be formalized. I would really like
Twitter to formalize RT’s so that I can filter them out, because I
find very little value in them personally. Twitter already has
functionality in it (liking tweets) that seems like a more logical
choice to use.

Social Network Analysis as a Filter.

I love the social graph, so I’m a fan of this one. This would be a
very resource heavy way of validating anything, and the whole
premise of the spam argument is that twitter is growing really
fast. I don’t think this is a viable option, at least not when
applied to every message. There is a lot of interesting data to be
gleaned from the social graph, however that is another post.

Metadata for Filtering.

He makes a good point that metadata is what is needed. It will be
really hard to do these calculations outside of twitter (especially
as it grows, it will be hard internally). I really think that the
spam problem is something that is a non starter, and twitter will
work just fine without any more measure of spam protection. The
metadata will be really interesting for a lot of other
applications.

Conclusion

I have yet to see a real post that has made me think that twitter
will have a spam problem. The opt-in subscription method is really
genius, and makes spam almost impossible. The model of twitter will
stay spam free (I will get content from people I follow). External
services (search and aggregators) will suffer from spam problems,
until they get better (spam) filtering.

I think the real problem of twitter is how to find interesting
people to follow, and not how to remove spam. This is where the
problem of spam and filtering really come into play. Starting with
a network of people you know, and branching from there is how
twitter will work. The social graph is really interesting in that
realm.

A lot of the conversation above leads itself into other really
interesting areas of data analysis. Stopping spam is easy, let’s go
data mining :)

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Really easy SSH tunneling

SSH Tunneling has become an invaluable tool that I probably use
more than I should. I love tunneling, and use it all the time. This
will be a quick tutorial on how to use the SOCKS proxy ability of
SSH to allow you to tunnel your HTTP traffic through a remote
server.

This is useful when you’re on a connection that has a silly filter
on it (school or library). Since it’s a
SOCKS5 [http://en.wikipedia.org/wiki/Socks5] proxy, it is useful
for tunneling other things as well (like IM). It is also useful
when browsing on public wifi or anywhere that you can’t trust the
network connection you’re on, since it encrypts all the data that
is sent over it.

SSH

The command to tunnel in SSH is really simple. You simply do:
ssh -ND localhost:5555 example.com to tunnel traffic through
example.com. This is a nice one off, but I actually have the
configuration in my ssh config. To do that, in your ~/.ssh/config,
you need to put in the settings you want your proxy to have.

Host tunnel
 Hostname example.com
 DynamicForward localhost:5555

This allows me to simply do ssh -N tunnel, and it will setup a
proxy. This is basically turning my local port 5555 into a proxy
that goes through the remote host. It is encrypted from my network
to the remote network, which is really nice. The -N flag is
used so that it doesn’t create a shell on the other end, and simply
creates the proxy connection.

Firefox

In firefox, you need to go into your Preferences > Advanced >
Network > Connection > Settings. This is where your proxy settings
live. Go down the the SOCKS host, and set it to localhost, with the
port you set up above, 5555 in this case. It should look something
like this:

[image: Configuration for Proxy]
Configuration for Proxy

I use the
Quickproxy [https://addons.mozilla.org/en-US/firefox/addon/1557]
extension to easily turn my proxy settings on and off. It puts a
small button on your bottom status bar in Firefox, and clicking it
turns your proxy on and off.

Now you simply flip the switch on your QuickProxy, and you are
surfing through an encrypted connection. To check if it’s working,
I use http://whatismyip.com to check my remote IP. If it changes
between the proxy being on and off, you know the proxy is working.

This is a really easy way to simply create a two click encrypted
proxy. Hope this is helpful, and I’d be curious if people have
other tips and tricks in this regard.

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Pycon and Euro Djangocon

The ice is starting to thaw and I’m making my way out from under my
first winter in Kansas. You know that spring is coming because the
conference season is starting to bloom. I’m looking forward to a
bunch of conferences that will be upcoming in the new few months.
I’ll be attending two of them, and hope to see lots of interesting
people there!

Pycon

First up is Pycon [http://us.pycon.org/2009/about/], which is
happening at the end of March. I am really excited to be going,
seeing some of the
great talks [http://us.pycon.org/2009/conference/talks/] that
are planned, and meeting some of the
awesome people [https://us.pycon.org/2009/register/default/attendees]
in the community.

Following the conference, there will also be a
Django [http://us.pycon.org/2009/sprints/projects/django/]
sprint that I will be attending. I know the 1.1 release candidate
of Django is supposed to be released some time during the sprints,
so that will be exciting!

Euro Djangocon

I submitted a talk that was accepted for
Euro DjangoCon [http://euro.djangocon.org/blog/2009/03/05/confirmed-speakers-so-far/]
that I am really excited about. I will be talking about Testing in
the Django realm, which I think is one of the areas where our
community needs to improve. I’m looking forward to having
discussions with people about how we can make testing (even more)
amazing in Django. It will be a great opportunity to get to Prague,
and enjoy the European Django Community that I have only met
online.

The conference talks will be on May 4-6. There will also be two
days of sprints after this one, which I assume will be used to
brainstorm and get some neat things started for Django 1.2.

I’m really looking forward to these conferences, and I hope that
everyone can get a chance to come out and participate in the
discussion about Django and the community.

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Testing AJAX Views in Django

A lot of the Django code we use at work has a special case for
AJAX. It has been a kind of a pain to test, because the test client
by default doesn’t use AJAX. Luckily the
is_ajax [http://code.djangoproject.com/browser/django/trunk/django/http/__init__.py#L80]
call in the Django HttpRequest object is a simple check of an HTTP
Environmental variable.

An undocumented feature of the Django Test Client is that you can
pass in custom HTTP ENV variables on requests. The definition of
get for example is:

def get(self, path, data={}, follow=False, **extra):

Later on in the file, the request environment is then updated with
the extra keyword args: r.update(extra).

This lets us throw in arbitrary variables in our get and post
requests in the test client. Like so:

r = self.client.post('/ratings/vote/', {'value': '1',},
 HTTP_X_REQUESTED_WITH='XMLHttpRequest')

Note that the custom env is outside of the dictionary of get
parameters. This will now return the /ratings/vote/ view with the
output that is normally called on an AJAX request.

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Django’s Summer of Code students announced!

Today is the day that Google has announced the accepted projects
for the Summer of Code. Django has 6 spots this year, with a bunch
of exciting projects. I am lucky enough to be mentoring
Kevin Kubasik [http://kubasik.net/blog/] with his project
“Upgrade the Awesomness Quotient of the Django Test Utils and
Regression Suite”. I’m really excited for the opportunity to help
improve Django by overseeing Windmill testing of the admin, and
lots of other small testing improvements that will hopefully make
it into trunk.

I would like to congratulate all the students that got accepted,
and to everyone who didn’t, you can still contribute! Also remember
that contributing through the year will make the chance of you
being accepted next year a lot higher! Here is the full list of
accepted proposals:

Honza Král, “Model aware validation” Mentor: Joseph Kocherhans

Kevin Kubasik, “Upgrade the Awesomness Quotient of the Django Test
Utils and Regression Suite” Mentor: Eric Holscher

Christopher Cahoon, “Improved HTTP and WSGI Support” Mentor:
Malcolm Tredinnick

Zain Memon, “UI improvements for the admin interface” Mentor: Jacob
Kaplan-Moss

Marc Albert Garcia Gonzalo, “Implementation of additional i18n
features” Mentor: Jannis Leidel

Alex Gaynor, Multiple Database Support in Django Mentor: Russell
Keith-Magee

Note that you can view the
full list with abstracts [http://socghop.appspot.com/org/home/google/gsoc2009/django]
on Google’s site.

Looking forward to a summer full of great new features and amazing
community involvement for Django and all the organizations
participating. A big thank you to Google and
Jannis Leidel [http://jannisleidel.com/] for sponsoring and
administering Summer of Code, respectively.

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Adding Google Analytics to Sphinx Docs

This is just a reminder for myself later, or people looking on
Google. Also note, that this method is useful for putting any
Javascript content into your sphinx docs, but Analytics tracking is
a common use case.

Step 1: Where to put my files?

Check your conf.py on your Sphinx docs. You need to make sure your
templates_path variable is pointed to a directory that exists.
It is relative to your current directory. I use _templates,
which I believe is the default. This is where you can override
Sphinx templates. They use Jinja2, which is a relative of Django
templates, so it should be pretty simple if you’re used to Django
templates.

Step 2: Override the default template

In your _templates directory, add a file called layout.html.
The
Sphinx Docs [http://sphinx.pocoo.org/templating.html#jinja-sphinx-templating-primer]
are pretty good in this area, containing a full listing of all the
template that you can override. The
Sphinx Source layout.html [http://bitbucket.org/birkenfeld/sphinx/src/tip/sphinx/themes/basic/layout.html]
is also really nice, so you can see what it is by default.

Analytics says that you should put your analytics code “Right
before the </body> tag” on your site. This means at the bottom
of the footer. Google should have given you a piece of Javascript
code to paste in your site, copy that below. So in your new
layout.html, put in the following code:

{% extends "!layout.html" %}

{% block footer %}
{{ super() }}
<script type="text/javascript">
var gaJsHost = (("https:" == document.location.protocol) ? "https://ssl." : "http://www.");
document.write(unescape("%3Cscript src='" + gaJsHost + "google-analytics.com/ga.js' type='text/javascript'%3E%3C/script%3E"));
</script>
<script type="text/javascript">
try {
var pageTracker = _gat._getTracker("YOUR_GOOGLE_CODE_HERE");
pageTracker._trackPageview();
} catch(err) {}</script>
{% endblock %}

Take note of the {{ super() }} call. This means that you are
calling the inherited template’s code, which pulls in the default
Copyright notice into the footer. Then you can put in your custom
code after that.

Let me know if there are any other neat Sphinx tricks and tips that
you have. I’m in love with the software and learning more about it
daily.

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

A playground for Django Template tags and filters

The Problem

Any sufficiently large Django project starts to have a wide variety
of Template Tags and Filters. Even Django ships with a dizzying
array of them that allow you to do all sorts of fun and interesting
things. Ellington, our CMS at work, has a ton, and I’ve been
thinking about ways to make tags and filters a bit more accessible
to people who are using the CMS.

I’m thinking along the lines of people who are tech savvy, but who
were just hit with a huge wall of tags and filters to look at. I
want them to be able to really easily play with the functionality
and see what it does.

The Solution

I created a proof of concept playground for tags and filters in the
django admin. It is released as a simple third party app that I
have up on
Github [http://github.com/ericholscher/django-playground/tree/master].
Here is a small 1:40 minute screencast that explains what I did:

Django Admin Playground from Eric Holscher on Vimeo.

It gives you a “Play” link next to each of the tags and filters in
the admin. Once you click on that, if the docstring for the tag has
a code example, it attempts to parse that out. This allows you to
easily test out the examples that you should have in the docstrings
for your tags.

It displays the docstring above the input areas and allows you to
input context variables (naively) and render the template. It uses
Jquery to do an ajax post and response that is displayed on the
right side of what the output of the template would be.

A simple example with the Add Template Tag:

[image: Add Template Tag]
Add Template Tag

Caveats

This is very hacky and basic code. Totally just a proof of concept
and might not work for you. I think that the ideas are worthwhile,
and something that could be included in Django at some point.

Currently the context values are just being parsed at the : and
split into a dictionary. If anyone knows a good way to turn a basic
list like this (using YAML?) into Django objects, then I would be
all ears. I thought about it a little bit but couldn’t think of an
elegant solution.

Also the parsing of the templatetag syntax out of the templates is
incredibly simplistic. If I took some time and played around with
ReST I’m sure I could figure out a better way to do that (Pulling
out the “code blocks” somehow?). But a basic regex worked well
enough to get the idea done.

Feedback welcome.

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

EuroDjangoCon Talk: Testing Django

Just got off the stage at
EuroDjangocon [http://euro.djangocon.org/], which was my first
real talk in front of the Django Community. I hope that people
enjoyed it, and that it was informational. Here are the slides to
my talk in
PDF Form [http://media.ericholscher.com/slides/Testing%20slides.pdf],
and on slideshare.

Testing Slides

I hope that people have questions or constructive feedback, and I’d
love to hear what everyone thought. I will be writing a full
writeup at the end of the conference, but I’ll say that it has been
amazing thus far!

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Migrating Django Test Fixtures Using South

The Problem

Migrating test fixtures is one of the biggest pains of testing. If
you create your tests too early, then change your schema, you have
to go back and touch all your old test fixtures. This discourages
people from writing tests until their app is relatively ‘stable’.
As we all know, this may never happen :) This solves half of the
problem, the part where you have to manually change a bunch of
fixtures to reflect changes in your schema or data.

Possible Solution

During the questions in my EuroDjangoCon talk, someone asked a
question about this. I didn’t have a good answer, but someone from
the crowd raised their hand and suggested using
South [http://south.aeracode.org/]. Once your project has data
migrations for it’s real models (like any production site should),
it should be relatively easy to then load up your test fixtures, migrate your database, and dump them back out.

I will be writing out a pretty basic tutorial on south, alongside
of the example of how to migrate your test data using South. I
think it’s pretty fantastic. I hope that if you aren’t already
using south, this tutorial will show it’s simplicity and power, and
if you are, I hope to show you another way to use it. If you
already understand south and have data migrations, you can skim the
Example section and just focus on the later part.

I am using my
Django Test Utils [http://github.com/ericholscher/django-test-utils/tree/d9d718025d6aa128b4a13dab91e3013a2b6a3dd0/test_project]‘s
test_project at a certain revision for this demo, so you can look
there and follow along if you want to see the actual files used.
Look at the next commit to see the outcome of the project :)

Example

I went ahead and made a simple little example application to test
this on. It will be the common migration scenario of adding a slug
to a model. We will be using the Polls app that everyone knows and
loves from the Django Tutorial.

I don’t currently have south installed at this point in test utils,
so if you’re following along, you just have to download south and
add it to the installed apps before you start.

Basic Setup

So you have the basic polls models.

class Poll(models.Model):
 question = models.CharField(max_length=200)
 pub_date = models.DateTimeField('date published')

class Choice(models.Model):
 poll = models.ForeignKey(Poll)
 choice = models.CharField(max_length=200)
 votes = models.IntegerField()

We realize that we don’t have a way to show these well on the site,
because they don’t have a slug. So we want to add a slug to the
Poll model. First off you need to have the initial migration for
your app, so that we can migrate it. We are going to use south, so
we need to create our initial migration.

$./manage.py startmigration polls --initial
Creating migrations directory at '/Users/ericholscher/lib/django-test-utils/test_project/polls/migrations'...
Creating __init__.py in '/Users/ericholscher/lib/django-test-utils/test_project/polls/migrations'...
 + Added model 'polls.Poll'
 + Added model 'polls.Choice'
Created 0001_initial.py.

Adding your fields

As you can see, south knows how to add a migrations directory to
your app and fill it up with the correct migration name. Now lets
go ahead and edit our model.

class Poll(models.Model):
 question = models.CharField(max_length=200)
 pub_date = models.DateTimeField('date published')
 slug = models.SlugField(null=True)

As you can see, we added a slug field. It has to be null=True
because we will be creating a lot of them, and they must be able to
be null before we can add the data to them. Now lets go ahead and
create two migrations. We want to add one that creates the field,
and then we want to create one that fills out the slug from the
question field.

$./manage.py startmigration polls add_slug --auto
 + Added field 'polls.poll.slug'
Created 0002_add_slug.py.

Writing your Data Migration

This creates the migration that we want that allows us to add the
field. Now we go ahead and run startmigration again, just
passing the app name. This creates a stub migration for us, with
the model serialized on the bottom, which allows us to just write
the code we care about.

$./manage.py startmigration polls populate_slug_data
Created 0003_populate_slug_data.py.

Note that it is a good practice to separate your migrations that
effect your table structure and things that actually migrate data.
Now we go in to the migration and add in the code that migrates the
data. It will end up looking something along these lines.

from south.db import db
from django.db import models
from polls.models import *
from django.template.defaultfilters import slugify

class Migration:

 def forwards(self, orm):
 for poll in orm.Poll.objects.all():
 poll.slug = slugify(poll.question)
 poll.save()

 def backwards(self, orm):
 "Write your backwards migration here"
 for poll in orm.Poll.objects.all():
 poll.slug = ""
 poll.save()

... Chopped for clarity ...

As you can see, the migration is really simple! This uses a fake
Django ORM (which is just the real one, loaded a different way.)
Now you can go ahead and test out your fancy new migrations.

Running the migrations on your test data.

Now as you see, you have these fancy migrations that actually
haven’t touched your database yet. I’m going to walk through the
entire process of creating your database from the syncdb stage
to the outputting of your shiny new test fixtures.

Setting up your test database

So the whole point of this exercise is to be able to migrate your
test fixtures the same way you do your real database. This means
that we simply load up a new version of our database with our test
data, run our migrations, and serialize it back out, ready for our
tests.

Go ahead and run syncdb on your project. This will do all the
normal things you’re used to, except that at the bottom of the
output, you’ll see a message about things not being synced because
of south:

Synced:
 > django.contrib.auth
....

Not synced (use migrations):
 - polls
(use ./manage.py migrate to migrate these)

Now we need to go ahead and get the polls data in our database at
the point where our fixtures exist. This means that we only want
our initial data to be loaded. So we go ahead and tell south to
migrate to our first migration.

$./manage.py migrate polls 0001
 - Soft matched migration 0001 to 0001_initial.
Running migrations for polls:
 - Migrating forwards to 0001_initial.
 > polls: 0001_initial
 = CREATE TABLE "polls_poll" ("id" integer NOT NULL PRIMARY KEY, "question" varchar(200) NOT NULL, "pub_date" datetime NOT NULL); []
 = CREATE TABLE "polls_choice" ("id" integer NOT NULL PRIMARY KEY, "poll_id" integer NOT NULL, "choice" varchar(200) NOT NULL, "votes" integer NOT NULL); []
 = CREATE INDEX "polls_choice_poll_id" ON "polls_choice" ("poll_id"); []
 - Sending post_syncdb signal for polls: ['Poll']
 - Sending post_syncdb signal for polls: ['Choice']

Migrating your test data

As you can see, this created out database table without the slug
field. This is good, because our fixture data doesn’t include the
slug field. This is where things get a bit annoying. The loaddata
command uses the models that are on disk to check if the data loads
correctly. So you need to check out your code at the revision
before the migrations were applied (in our case, we can simply
comment out the slug line). Then you are able to go ahead and load
your test data.

$./manage.py loaddata polls_testmaker
Installing json fixture 'polls_testmaker' from '/Users/ericholscher/lib/django-test-utils/test_project/polls/fixtures'.
Installed 8 object(s) from 1 fixture(s)

Then you can put the slug back in (or check out the current version
of your code). Now you have your data in your database in the old
un-migrated form. Let’s go ahead and migrate out test fixtures :)

./manage.py migrate polls
Running migrations for polls:
 - Migrating forwards to 0003_populate_slug_data.
 > polls: 0002_add_slug
 = ALTER TABLE "polls_poll" ADD COLUMN "slug" varchar(50) NULL; []
 > polls: 0003_populate_slug_data
 - Loading initial data for polls.

Now lets see if that worked. Let’s go ahead and run dumpdata and
see what all you have.

./manage.py dumpdata polls --indent=4
[
 {
 "pk": 1,
 "model": "polls.poll",
 "fields": {
 "pub_date": "2007-04-01 00:00:00",
 "question": "What's up?",
 "slug": "whats-up"
 }
 },
... snip rest of data ...

You now have your migrated data fixture! Hopefully everything
worked for you, and that this works for larger examples other than
this trivial example.

Conclusion

The little bit at the end where you have to revert back to the old
version of your code to use loaddata is a bit of a hack. With a bit
of tinkering, you should be able to use south’s serialized
representation of the model instead of the models on disk in order
to load the data. Doing this will make this whole process more
seamless.

If you would like to see the changes to the models and fixtures,
and migrations that were created, you can check out the
south demo [http://github.com/ericholscher/django-test-utils/tree/south-demo]
branch of test utils.

I would also like to thank
Andrew Godwin [http://www.aeracode.org/] for creating south, of
which none of this would be possible.

Thanks for reading, and I’d be curious to see what people think,
and if there are some improvements that could be made.

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Enable setup.py test in your Django apps

Setuptools comes with a way to
run the tests on your application [http://peak.telecommunity.com/DevCenter/setuptools#test].
This allows the user of your software to download it, and run
python setup.py test and check to see if the tests in your
application pass. This is really useful for distribution, because
the user doesn’t need to know or care how to run your tests (nose,
django, unittest, py.test, or whatever else), and can simply see if
they pass.

To do this, you simply define a test_suite variable in the
setup() function of your setup.py. This argument is a callable
that should return a test class. However, since Django has it’s own
test runner, we have to point this at a simple test runner that we
construct, and allow that to run the tests. This is because we must
set a couple of environmental things, like the settings module and
PYTHONPATH.

I did this with my test_utils project, you can see the
commit here [http://github.com/ericholscher/django-test-utils/commit/b18893ac7230b4689f9be19ce3f8fbfd13745324],
but basically I simply added this line to my setup.py:

test_suite = "test_project.runtests.runtests",

Then put this in the file test_project/runtests:

#This file mainly exists to allow python setup.py test to work.
import os, sys
os.environ['DJANGO_SETTINGS_MODULE'] = 'test_project.settings'
test_dir = os.path.dirname(__file__)
sys.path.insert(0, test_dir)

from django.test.utils import get_runner
from django.conf import settings

def runtests():
 test_runner = get_runner(settings)
 failures = test_runner([], verbosity=1, interactive=True)
 sys.exit(failures)

if __name__ == '__main__':
 runtests()

Note that there is a bit of path and settings hackery, this is to
enable Django to run correctly, with the test_project in the
PYTHONPATH. However, now if you want to run the tests, you simple
do a python setup.py test. You can also do a
python runtests.py to have the same outcome. You could also
have the runtests function simply be a call_command('test'),
but without the explicit sys.exit, setuptools complains that it
hasn’t been given a TestCase back.

This has a couple drawbacks in that it simply runs the entire test
suite. You can pass in a Test Suite to setuptools, but that isn’t
how the tests are organized in most Django apps. However, if you
want to run specific tests, you can still test things the regular
way through manage.py test. Presumably there is a better way to
do this, but it’s good to at least have a hacky way until a better
way emerges.

There is a lot of value in providing a standard interface to
running the tests on your application though. This allows the
distribution tools (pip and setuptools) to run the tests on your
application if they’d like. In the perl universe, CPAN runs the
tests on apps before installing them, and quitting if they fail. If
more people started making setup.py test work, we could hopefully
add this ability to Python’s distribution tools, and make the world
a happier place with better working software.

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Pretty Django Error Pages

Continuing on with the
simple [http://ericholscher.com/blog/2009/sep/5/debugging-django-production-revisited/]
tricks [http://ericholscher.com/blog/2009/jun/29/enable-setuppy-test-your-django-apps/]
that make everyone’s life a little bit better, I know a lot of
people hate that Django’s 500 pages don’t get rendered as a
RequestContext. This means that if you have context processors
(like one that sets a MEDIA_URL), they don’t get called. This was
causing our 500 pages not only to make users sad because something
broke, but knock them out of context becaue our entire design blew
up.

Luckily, Django makes it incredibly simple to redefine your 500
handler in your URLConf. Most pythonistas know that import * is
a bad thing, but it is standard in the Django community in your
URLConf to do a from django.conf.urls.defaults import *. This
has the effect of pulling in Django’s default handler500
function. So if you want to override Django’s default, you simply
set it up like so.

from django.conf.urls.defaults import *
handler500 = 'path.to.my.sweet.views.server_error'

Then you simply define a server_error view that renders the error
page with a RequestContext.

from django.shortcuts import render_to_response
from django.template import RequestContext

def server_error(request, template_name='500.html'):
 """
 500 error handler.

 Templates: `500.html`
 Context: None
 """
 return render_to_response(template_name,
 context_instance = RequestContext(request)
)

If you’re feeling extra special, you can even change the template
rendered. Note that you can also do this for the 404 handler by
defining a 404handler in your URLConf in the same fashion. Then
you can get
pretty error pages [http://www2.kusports.com/users/oldalum/]!

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Hacker Book Club

At LPDN [http://lpdn.org], our weekly programmer drinkup, we
have been talking for a while about watching the
SICP lectures [http://groups.csail.mit.edu/mac/classes/6.001/abelson-sussman-lectures/]
from MIT as a fun thing to do. I then got to thinking about how it
would be neat to involve more than just the few of us in Lawrence.
Everything is more fun on a larger scale, and having compatriots
makes you more likely to finish it. Somewhere along the lines of
the Infinite Summer [http://infinitesummer.org/], I was thinking
about having some kind of Hacker Book Club.

SICP [http://mitpress.mit.edu/sicp/] may be a bit intense for
the beginning of the club, but it’s something that I think that
everyone can learn and have fun with. Along with the typical book
club style things, seeing the audience, I think we could make some
really neat additions to the idea. A few have come to mind, but I’m
sure there are lots more.

I would imagine having an IRC channel where we can all hang out and
ask each other questions. I’m sure the #scheme channel will be a
resource as well, but it could be neat to have a focused group of
people focused on learning the same material. It feels a bit like
an open source classroom, where disperate people can come together
to learn and share in the open source mindset. Sharing is caring,
not cheating.

Since SICP is available for free online, we could suck the book
into a database of some sort and allow a commenting/discussion
medium around the text as well. The
Django Book [http://djangobook.com] is a good example of that. I
think it would be interesting trying to tie in discussion on the
site with IRC. Perhaps have some kind of encoding that allows you
to reference pages in the book on IRC and have that inline the log
transcripts. My friend Nathan [http://playgroundblues.com] also
runs Readernaut [http://readernaut.com], and already has a basic
syntax established for tracking book progress on Twitter. We could
throw this on IRC and twitter as well, where each user could
register their account and keep progress.

I think it would be a really interesting way to combine a lot of
the conversations that happens across the web in one place, with
context, about a book. I have also wanted similar abilities in
other things (Think your work IRC channel and code instead of Book
pages). This could spawn a neat open source project, if we were so
motivated.

Let me know what you think!

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Debugging Django in Production Revisited

In a
previous post [http://ericholscher.com/blog/2008/nov/15/debugging-django-production-environments/]
I talked about a neat middleware to debug production environments
in Django. It basically checked to see if you were a superuser, or
if you were in settings.INTERNAL_IPS, and if so, then it displayed
a technical 500 page for you (The yellow one you know and love).
Anyway, at that point it was more of a simple idea, and not really
used in production.

At work the other day I was working on a bug that was only showing
up in production, and not on staging. I remember back to this
middleware and thought it would be perfect. Anyway, at work we have
a lot of non-technical people that are superusers (think my bosses
boss). We also all have the same external IP’s when at work, so
none of the previous methods I had would work for this.

Thinking about it, and talking to my co-worker
Ben Spaulding [http://benspaulding.com], we thought that Django
has Groups built in, so why not use that? So I went ahead and
re-jiggered the middleware to be based around groups.

from django.views.debug import technical_500_response
from django.contrib.auth.models import Group
from django.core.cache import cache
import sys

class UserBasedExceptionMiddleware(object):
 def process_exception(self, request, exception):
 users = cache.get('technical_error_users')
 if not users:
 skip = cache.get('no_technical_error_users')
 if skip:
 return None
 try:
 g = Group.objects.get(name='Technical Errors')
 users = g.user_set.all()
 cache.set('technical_error_users', users, 60)
 except Group.DoesNotExist:
 cache.set('no_technical_error_users', True, 60*60)
 return None
 if request.user in users and request.user.is_superuser:
 return technical_500_response(request, *sys.exc_info())
 return None

Since it is middleware, I went ahead and decided to use the cache
framework to make sure that we weren’t doing a DB query on every
request. Also, I had to account for the case when the group hasn’t
been added yet, so when that happens, it caches the fact and
doesn’t check again for another hour. If the Technical Errors group
exists, it caches the members that are in it for a minute. This
means that a DB query only happens every minute, which is fine.

I’d be curious how other people might improve this, as it seems a
little bit janky still. However, it works for us, and is incredibly
useful when debugging. Instead of getting a link to a broken page,
you go to the page and get a nice 500, telling you exactly what
went wrong.

I can think of one basic improvement in just writing this post,
which would be to import settings and to just return None if DEBUG
was True, or if the CACHE_BACKEND was set to None. This would
allow it to stay out of the way if there was no caching, or the
Technical 500 was already going to be raised.

I do think that this middleware removes a lot of the reason to run
a site under DEBUG=True, so hopefully it will result in less sites
launching with DEBUG on.

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Token Testing Talk Slides: Djangocon 2009

There are the slides to my Token Testing Talk from Djangocon. I’m
hoping the videos will be posted soon, but I think that it went
well. There were a lot of good questions, and I need to put some
recap posts up, but for now here is a copy of the slides.
PDF [http://media.ericholscher.com/Token%20Testing%20slides.pdf]

If you have any questions or comments, feel free to leave them
below.

Token Testing Slides

View more documents from ericholscher.

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Easily Running the Django Test Suite

Update As of Django 1.2, Django ships with default test
settings for sqlite. They require two databases to be defined,
because of Multidb. More information at
Django advent [http://djangoadvent.com/1.2/django-testing-improvements/]
and in
the docs [http://docs.djangoproject.com/en/dev/internals/contributing/#running-the-unit-tests]

Alex Gaynor had a write up about
Running the Django Test Suite [http://lazypython.blogspot.com/2008/11/running-django-test-suite.html],
which is a quick overview of how to run the suite. The
official docs [http://docs.djangoproject.com/en/dev/internals/contributing/?from=olddocs#running-the-unit-tests]
also have a simple mention of how to run them. This post will be
more step by step, walking you through the steps to run the tests
for Django. This is a really important first step in writing
patches against Django. It is easy, but something that a lot of
people have a question about when they start.

Step 1: Grab the Django Source

To test Django, you need the code, so go ahead and grab the
source.

svn co http://code.djangoproject.com/svn/django/trunk/ django_src

Step 2: Settings

In order to run the Django test suite, you need to have a settings
file. Usually for testing, you run the Django test suite under
SQLite. This is the easiest and fastest way to run the tests. If
you writing code against something that touches parts of the ORM or
Database code in general, running it against another database that
you have at your disposal if generally a good idea as well.

To run the SQLite tests, you simply need a settings file with one
line in it:

DATABASE_ENGINE = 'sqlite3'

Go ahead and put this command in the top-level of your django
checkout (the one with the tests directory in it).

Step 3: Run the tests

Now you can run the tests. Your checkout should look something like
this:

django_src/
 docs
 django
 examples
 setup.py
 tests
 settings.py
 ...

We need to make sure that Django is on your PYTHONPATH, this allows
Python and thus Django to see the django module that we want it to
test. You can set this inline, and then run the tests with the
correct settings file. We can do that in a single command like so:

PYTHONPATH=`pwd` ./tests/runtests.py --settings=settings

The final commands, which you should be able to copy and paste into
a shell to check out the code and run the tests is as follows:

svn co http://code.djangoproject.com/svn/django/trunk/ django_src
cd django_src
echo "DATABASE_ENGINE = 'sqlite3'" > settings.py
PYTHONPATH=`pwd` ./tests/runtests.py --settings=settings -v1

The -v1 will set the verbosity to 1, which gives you the dots
that everyone knows and loves.

Now that you have a django source tree with running (and hopefully
passing) tests, you can apply a patch or go ahead and develop on
this code and be able to test it easily!

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

What they didn’t teach me in college

Updated at the bottom of the post.

Warning: This is a bit of a brain dump.

In the software industry there is a lot of back and forth about the
value of a college degree. This post won’t go into that too much, I
just want to talk about the notable things that were left out of my
Computer Science degree. Mostly things that are used in the day to
day environment outside of a university, but aren’t used
extensively inside of them.

My degree was a more classical CS degree, which focused on
algorithms and theory. However, there was a decent bit of actual
“real world” knowledge that they tried to impart. After being at a
real job for over a year, I think it is interesting to look back on
what I wasn’t taught.

Software testing

In college, the concept of testing was basically ‘compare your work
against this expected output file’. Sometimes that job was
automated, other times it wasn’t. There was absolutely not concept
of an automated test suite. However, I think that this may be a
limitation of the semester long class idea. A lot of the value from
testing comes from things that are real (production, refactoring)
or looking back at code that you wrote a long time ago. I have a
lot more thoughts on this, and it deserves it’s own post. However,
it was certainly a glaring part of what I do now that I had no
experience with out of school.

Version Control

In the classes that I took, we simply submitted the work to the
teacher and that was that. We didn’t check it into a repository, or
even version the work we were doing locally. At the time the whole
DVCS movement wasn’t quite as big, so I can imagine a lot more
people doing local versioning now. I think that the fact that
viewing other students work is sometimes considered “cheating”
(which is silly), makes it difficult to have a shared repository
for all students.

A big problem with universities is that knowledge the old mindset
that sharing knowledge is cheating. Luckily mine was a bit more
enlightened, but I think having a shared repository of code would
make this philosophy a bit too “real”.

Web development

We had optional classes that offered PHP/MySQL based website
making, but nothing in the curriculm about web development. It
seems that in this day and age, so much of what we do is centered
around the internet that ignoring it in the classroom is silly.
That may be the fact that I now do web development, but I feel that
someone coming out of a Computer Science degree not understanding
the basics of Web Development is a bit silly.

Bug Tracking / Maintenance

Our code in university only had to be written once. There was no
concept of going back and looking at old code and fixing it. It is
one of those realities of everyday work that is totally ignored by
universities. I think this one may be a bit hard for them to teach,
but mostly because of systematic problems.

What to do about it?

I think that a lot of the problems come from the
Single Semester Class Paradigm. You do some kind of programming
for a class, and then it disappears into the ether never to be seen
again. A lot of the value and reality of coding is that you write
code and then have to keep changing it and making it work.

Imagine if you were tasked with writing code your first year. This
code was checked into the schools version control system in a
branch of that class for that semester. Then in your following year
you have a class that recalls that code, and you update it with
some new technique you have learned. You are a bit dismayed at how
badly you used to code, and how hard it is to understand.

Then your third year you go back to your code and have to write
tests for it. The class that you had taken the year before is
tasked with taking your code and adopting it for a new purpose.
They file bug reports on your code, and your commits fix their bugs
and contain tests. This allows you to
learn how to do maintence, interact with a bug tracker, and write tests.
For the younger students, it allows them to figure out how to write
good bug reports, and interact with other coders.

Conclusion

I think the really important part is that your code doesn’t die.
You write code in a class, and it is used by other people, or it is
kept and brought back up later. This you as a student to reach the
“aha” moments where you see how much you have learned in the past
year, by how much your old code sucks. It provides a lot more
knowledge of useful tools and real workflow.
Without too much effort, it makes the educational nature of college more valuable and more realistic.

I would be interested to hear people’s thoughts. If you got a
degree, did they do anything similar to this? Are you using up
tools and practices?

As a bonus, I think that a lot of the parts missing in universities
are missing in good real world software shops. There are a lot of
software houses that don’t use version control, write tests, or use
a bug tracker. This strikes me as crazy.

Update (11-11 13:20)

A lot of people in the comments have said that computer science is
more about math and algorithms, and that it shouldn’t teach you
these things. Most people who take this stand say that you
shouldn’t be teaching programming at all, and it should be a more
math based education. I agree with that point of view, but that
isn’t how CS is taught these days.

CS students are doing a lot of programming, and performing tasks
that could be made better with these use of tools.
I am simply arguing that if you’re going to be teaching programming to CS students, you should also teach them the best practices and tools associated with that craft.
It would only take 1 or 2 classes out of a CS curriculum full of
theory and math based classes.

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Large Problems in Django, Mostly Solved: APIs

This is the third part of my Large Problems Series. The first two
were
Search [http://ericholscher.com/blog/2009/nov/2/large-problems-django-mostly-solved/]
and
Database Migrations [http://ericholscher.com/blog/2009/nov/6/large-problems-database-migrations/].

A lot of efforts have come and gone in the Django space, trying to
provide a API’s that do various things. Some have tried to give you
automatic CRUD based off your models or by abstracting the admin,
others have extended Django serializers to provide some kind of
functionality, and there have been lots of other approaches.

I think that
Piston [http://bitbucket.org/jespern/django-piston/overview/]
hits a sweet spot for creating APIs. It has a lot of nice little
features, and handles the general use case well. It is also
abstract enough that it allows you to provide your own layer on top
of it with ease.

Piston

Piston [http://bitbucket.org/jespern/django-piston/] has three
major philosophical concepts that are important; Resources,
Handlers, and Emitters. A Resource is the “thing” that you are
trying to represent in your API, the domain object. This could be a
blog post, a user, or anything else. A Handler is how you do
something with that resource. It is a lot like a view, where you
get the request and it delegates to different functions based on
what you want to do (create, update, read) with it. The Handler
will return some kind of object, and the Emitter’s job is to output
this. It is where you choose the format (xml, json, yaml) and other
information about how the data is returned.

The way these things are abstracted makes it really easy to create
a REST API. In fact, the documentation has a
full working example [http://bitbucket.org/jespern/django-piston/wiki/Home#fully-functional-example].

I would like to talk about some of the nicer features and abilities
of Piston.
This is not a tutorial, but more a pointer, so that you know it exists and kicks ass.
The
Piston Documentation [http://bitbucket.org/jespern/django-piston/wiki/Documentation#piston-documentation]
is decent in regard to getting you going.

Useful Features

Authentication: OAuth, Basic Auth

I have found
OAuth [http://bitbucket.org/jespern/django-piston/wiki/Documentation#authentication]
something of a pain to implement when I tried to do it on my sites.
Piston handles this for you, and does a good job of it! This gives
you a really nice authentication scheme for your API users for
free. If you need something simpler, HTTP Basic Auth is provided
out of the box as well. The Authentication is also tied in
automatically to the Django Authentication scheme, making this
relatively hard problem of API’s incredibly simple. This gives you
both ranges of Authentication mechanisms, simple and advanced,
without touching a line of code.

Automatically handles different serialization formats

Out of the box you also get
serializers [http://bitbucket.org/jespern/django-piston/wiki/Documentation#emitters]
for JSON, YAML, Python Pickle, XML, and Django’s own model
serialization format. By default, if you append ?format=X to a URL
of a piston resource, it will automatically return the data in that
format. Thinking about serialization formats is basically
non-existent.

Guides you towards proper REST practices

Piston by default and convention returns the
correct status [http://bitbucket.org/jespern/django-piston/wiki/Documentation#helpers-utils-decorators]
codes for events. It even has a convinent rc module that maps
response codes to names, to make it super simple to know what you
want to return. You have to try to not follow proper REST
convention.

if not request.user == post.author:
 return rc.FORBIDDEN # returns HTTP 401

API isn’t tied to models

Tying your API to your models seems like a good idea at first.
However, you quickly want to return objects from other models,
results of methods, and other data that isn’t related to your
model. Piston to start out lets you define a model to tie it to,
but this simply sets sane defaults for the handler methods. Once
you override these methods, the fact that parts of the handler is
tied to a model doesn’t matter. You can keep providing the basic
parts that you don’t want to write, but extend where you need more
advanced functionality.

Lots more, built in

Piston has just a ton of really useful things that you need built
in, and well configured. Among the things that I haven’t mentioned,
but that you will appreciate:

	Throttling [http://bitbucket.org/jespern/django-piston/wiki/Documentation#throttling]
(by view, user, or IP)

	Streaming Responses [http://bitbucket.org/jespern/django-piston/wiki/Documentation#streaming]

	Form Validation [http://bitbucket.org/jespern/django-piston/wiki/Documentation#form-validation]
(using Django’s form library)

	Generated Documentation [http://bitbucket.org/jespern/django-piston/wiki/Documentation#generating-documentation]
(allowing you to document the methods you have available)

Conclusion

Piston is just incredibly well configured by default. You can write
a couple of lines of code, and most of the features that you expect
in an API are there for you. However, this doesn’t mean that it is
limiting you from doing complex things as well. All of the
important bits are sanely configured, but easily pluggable. It is a
really amazing piece of work when you dig down into it and realize
that most things you want to change are simple.

Like Django and Python,
piston makes doing the correct thing simple and obvious. If you
end up fighting against the app, you’re more than likely doing
something wrong.

I know I didn’t get all the way into piston, and it is amazingly
well written. There are lots of little niceties hiding in dark
corners, instead of demons. I would love to see this project get
more attention, tutorials, and blog posts in the community. Are you
using Piston? Is there something you love or hate? Let me know, or
even better, blog about it!

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

The importance of striving for awesome.

When I was about to graduate from college, I was often asked what I
would be doing with the rest of my life. This is a usual question
that is asked of graduates and I have very rarely heard it answered
to satisfaction. Upon being asked this for the 42nd time, I decided
on my response..”Something Awesome”

I know this is a simple answer and decidedly nondescript. I think
it is a powerful answer in the philosophy that it entails. A lot of
people are described by their job, and that is what they live for.
I really don’t want that to be me. I want my job to describe who I
am, an extension of the things that I care about.

“Something awesome” is an incredibly powerful, positive, and
motivating prospect. Everyone wants to be doing something awesome.
Why allow yourself not to? I think that is just unacceptable...

I want people to call me out when I’m sucking. When you set the bar
awesome high then you really can evaluate where you are going. I
think striving for the moon and getting to the clouds is a much
better result than striving for the roof and waiting for an
elevator.

There was an interesting tidbit that I read about the value of
aiming high. Aiming high isn’t the norm. Most people are busy
trampling over each other to compete for mediocrity and the truly
awesome stuff never gets done. Stop worrying about how you’re going
to do something, simply strive to be awesome and settle for nothing
less.

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Django Testing Code Coverage

As part of the summer of code 2009, Django test coverage has been
developed. I mentored Kevin Kusabik [http://kubasik.net/blog/],
who developed the code. It is hopefully going to be merged in 1.2,
but there are still a few issues to be worked out in the
implementation. That said, it currently works, and provides a nice
introspective view of your code. This post will tell you how to run
coverage on your code base.

It should be noted that having code coverage is a good way to look
into your code, but doesn’t guarantee that there are no bugs. Ned
Batchelder’s
Pycon talk last year [http://pycon.blip.tv/file/1947218/] is a
good introduction to coverage. We are using his
Coverage.py [http://bitbucket.org/ned/coveragepy/src/tip/coverage/]
module in this example to produce the coverage output in Django.

I have taken the commits from the Summer of Code and put them in a
Branch on github [http://github.com/ericholscher/django/tree/coverage].
You will want to clone this and put it on your PYTHONPATH as your
django module. If you are already using the github mirror, simply
add me as a remote and pull down the coverage branch.

git remote add ericholscher git://github.com/ericholscher/django
git fetch ericholscher
git co -b coverage ericholscher/coverage

Once you have the code, you simple run your tests in the normal
manner. However, now have the added options of --coverage and
--report. If you run the test command with just --coverage,
it will generate a text based coverage report. If you also specify
the --report option, it will output a HTML report in the
current directory. The HTML report is where most of the value of
coverage comes from, allowing you to see what lines were covered
and missed. Here is an example
HTML report [http://media.ericholscher.com/django_coverage/],
showing the Django source code’s coverage.

One of the major problems with coverage is that it slows down
running tests by a non-trivial amount. For every instruction
executed, there must be a record made. With coverage.py 3.0, this
extension is written in C for speed, however it still noticeably
slows down test speed.

I hope that you give it a try and enjoy the results. I’ll be
spending some time over the next week or 2 cleaning up the code and
trying to get it into shape for inclusion in Django.

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

You should stay for the sprints

At most open source conferences, a lot of attention is given to the
talks. At the ones that I have been to (Djangocon and Pycon), the
most fun that I have had, and the most I have learned is during the
sprints. I want to talk about the value and importance of staying
for the sprints at a conference.

First off, lets talk about why you are going to the conference. I
am going to assume that you are a developer, interested in the
technology, and passionate. So the main reason that you officially
go to a conference is to learn. Open Source conference talks
are amazingly tech heavy, and the knowledge transferred in the
halls is vast. A speaker will give you a really great idea, insight
into a problem, and other priceless knowledge.

Then you go to another talk. You are inundated with other amazingly
new and interesting ideas. At the end of the day, your brain is
saturated, and then the dinner and the nights happen. The
unofficial reason to go to a conference is networking.
Networking is such a crappy term though, I view it more as
drinking and making friends. I now consider lots of
ridiculously smart people friends from late night conference
experiences.

So now the conference is coming to an end, you have learned a ton,
and you have met a ton of great new people. It all seems so short,
and you’re sad that you have to go home. WRONG. This is
precisely the time that you want to stay and enjoy things more!
That’s what Sprints are for.

Sprints allow you to solidify the friendships and knowledge that
you learned during the conference. You get to spend 2(-4) days of
working with these awesome people, on problems that you care about,
in person. You can take all of the knowledge that you have
gained, all the ideas that you have had, and put pen to paper.

The guy that gave the talk that inspired your idea, when you get
stuck, is sitting across the table from you. The people that you
took shots of whiskey with 3 nights ago are helping you debug
something in the Django Admin. You are helping your new crazy
friends conquer the concurrent turtle conundrum rife with GILs. You
are absorbing the vibrant energy that emerges from rooms full of
motivated, passionate, people getting shit done.

I really can’t speak highly enough about the value of sprints.
There is just so much goodness and uniqueness about them. I try my
hardest to stay for them at any conference that I go to.

Do you have any awesome sprint stories? Something that I have
forgotten to mention that just blows you away? I find that sprints
aren’t talked about very much, but I think they are one of my
favorite parts of being a member of an open source community.

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Announcing Kong: A server description and deployment testing tool

At work we have to manage a ton of Django based sites. Just for our
World Company sites, we have over 50 different settings files, and
this doesn’t take into account the sites that we host for other
clients. At this size it becomes basically impossible to test each
site in a browser when you push things to production. To solve this
problem I have written a very basic server description tool. This
allows you to describe sites (settings file, python path, url,
etc.) and servers.

You can see a basic version [http://kong.ericholscher.com/]
running for my personal site. It is super barebones, but it should
give you an idea of what exactly is possible.

The source [http://github.com/ericholscher/django-kong] is
available on Github. A 0.1 release will be uploaded to Pypi soon,
after a few of the blemishes have been worked out. I would like to
thank Nathan Borror [http://nathanborror.com] for the design
parts that are pretty :)

What does it do?

[image: Admin]
Admin

On top of this base, I have written a way to run tests against
these sites. You can categorize the sites by the type of site they
are (We have Marketplace, ported Ellington, and old Ellington
sites). This allows you to run tests against different types of
sites. You may also have custom applications that run on only one
or two certain domains. You can specify specific sites for tests to
be run against as well.

The tests are written in
Twill [http://twill.idyll.org/commands.html], which is a simple
Python DSL for testing. Twill was chosen because it is really
simple, and does functional testing well. The twill tests are
actually rendered as Django templates, so you get the site that you
are testing against in the context. A simple example that tests the
front page of a site is as follows:

go {{ site.url }}
code 200
find "Latest News"

This simply loads the Site’s front page, checks that the status
code was 200, and checks that the string Latest News is on that
page. The arguments to find are actually a regex, allowing for lots
of power in checking for content.

This then gives you the ability to view all of the results for your
tests in a web interface. Below is an example of the live view that
I see when looking at our servers. We have only just started using
Kong, but the tests it provides are really useful to make sure that
functionality works after a deployment.

You can also see the history of a test on a site. Currently it
shows the last 15 results, but paginating this page will be easy.
It allows you to see if your test has been running well over time.
Another nice thing is that it measures the Duration of the test, so
that you can see if it is going slow or fast.

As you can see, the data display is really basic. It will be
improved, but currently its basically the “simplest thing that
could possibly work”.

Using it yourself

When we deploy code changes, I generally run the Kong tests against
our sites, making sure that things work. When we launch something
new, I will write a kong test to exercise it across all sites. The
tests usually take a minute to write, and save lots of time and
heart ache, knowing all the sites work.

At the moment the tests can be kicked off by a django management
command. The check_sites command will allow you to run all of
the tests for a given Type or Test. Allowing you to run all of the
Ellington tests across all sites, or just run one test across all
sites.

django-admin.py check_sites --type ellington
django-admin.py check_sites --test test-front-page

We currently have this wired up to a cron job that runs every 10
minutes. If you set the KONG_MAIL_MANAGERS settings to True, it
will send an email to the site managers on a test failure. At some
point in the future, I will be integrating Kong into Nagios, so
that Nagios will handle the running and alerting of errors. That is
eventually the way that it will be run.

There are a lot of ways that this can be improved, however in it’s
current state it works for me. I figured releasing it will allow
anyone who needs something like this to be able to use it. There is
no documentation or tests, which will be fixed soon! The web
display can also be improved a ton, and that is a high priority as
well.

Let me know if you have any constructive criticism, or questions.
There are a couple other little nuggets hidden in the source, so
poke through if you want. Otherwise I’ll write up some proper docs
soon, so that you can use it.

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Finding Missing Indexes That Django Wants (Postgres)

On Monday at work, our sites started to slow to a crawl. We looked
to diagnose the problem, and found that the database server had a
load of 10, and was struggling to keep up with the morning rush of
traffic. After EXPLAINing the slow queries from the slow query log,
we noticed that a lot of sequence scans were happening. This
shouldn’t be happening because these queries should have indexes on
them. We realized somewhere in the porting process that we had lost
a bunch of indexes.

Check for missing indexes

So I went ahead and wrote a
little script [http://github.com/ericholscher/django-debug-utils/blob/master/debug_utils/management/management/check_indexes.py]
that basically diffs the current indexes and the ones proposed by
Django. This allows you to see the indexes that you are missing.
This will only work on Postgres, however if you parse the indexes
for your DB it should work there.

You can simply copy that file into your management commands. Then
you can run django-admin.py check_indexes, and it will output a
tuple of table and name. If you pass in the --show option, it
will actually output the CREATE statements that create the indexes.
This allows you to create the indexes in your DB by piping it in.

django-admin.py check_indexes --show | django-admin.py dbshell

You want LIKE, fast queries?

In our search, Frank [http://revsys.com] and
James [http://b-list.org] also discovered that when you have a
UTF8 database (which you should), Postgres needs a special index to
do LIKE queries against text fields. James filed a
Django bug [http://code.djangoproject.com/ticket/12234] with
details. However, if you are running a postgres database, it may be
worthwhile to look for places that you might be making similar
queries. For more information check out the
postgres docs [http://www.postgresql.org/docs/current/static/indexes-opclass.html]

We’ll do it LIVE

One other postgres index optimization that James and Frank
discovered was that Postgres gives you the ability to index on
state of a field. So if you have tables that have any kind of
status that is often queried, you can set a specific index on
that.

create index "published_story" on "news_story" ("status") where "status" = 1;

I hope that my little script and these tips allow you to make your
Postgres Database purr. I only just got schooled in Postgres
recently. Frank has been doing this a long time and has some
awesome postgres performance tips [http://www.revsys.com/writings/postgresql-performance.html].
I recommend reading through that if you really want to make your
database run well.

Note: It has been pointed out that South uses a different
naming scheme, so if you have indexes created with south, this may
not work quite right.

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Writing Code with Designers

When working on side projects, usually you wear all of the hats.
Sysadmin, developer, designer, marketing, etc. You have to do all
of them, and presumably you do one or two of them well, and the
others well enough to get by. Working at the Journal World has been
the first time that I have worked with real designers, and it has
been a learning experience.

I think it would be interesting to see a talk or a panel at
Djangocon this upcoming year about how to write code with
designers. There are a lot of little things that allow them to work
with your code better. A couple things that I can think of off the
top of my head are:

	How to structure data for templates

	How to write templates that are easy to mark up, with the least
amount of effort

	Writing good template tags and filters

I think that there is also a design process, where it really helps
if you include the designer in the process of scheming
functionality. I really find that designers have a better handle on
asking the ‘what does the user do here?’ and ‘what does this
actually accomplish?’ questions. Working with them on projects is a
really interesting difference than working by yourself on things.

Do you have designers that you work with, and does it help your
program design? Do you just have other programmers to bounce ideas
of off? Does it work in a similar way?

I find that this workflow is really beneficial to all involved. It
is the first time I have had the luxury of it, and was wondering if
other people have this process as well.

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Large Problems in Django, Mostly Solved: Search

It’s been a little over a year since I started doing Django
development full-time, for one of them real jobs. Around that time,
there were a few large problems in the community that hadn’t been
solved yet. They were kind of blemishes when you would talk to
people about Django, and I’m happy that most of them have been
solved.

This will be a series of posts that talk about the different big
problems that have been solved, and how they have been addressed in
the community.

Search

Search was probably the biggest annoyance for Django. It is
something that every site needs, and something that just wasn’t
really happening in the Django community. 2008’s Summer Of Code
ended with djangosearch [http://code.google.com/p/djangosearch/]
as a half-finished shell, that needed to be better architected; but
it did show a good push in the realm of search.

Out of those ashes, comes an awesome solution to the search problem
in Django. Haystack [http://haystacksearch.org/] is something I
am more familiar with (we use it in production at work), and is the
brain child of the ever modest, house rocking
Daniel [http://daniellindsleyrocksdahouse.com/]
Lindsley [http://toastdriven.com/].
It provides a number of Django patterns applied to search,
which makes it easier to internalize.

Note: Another approach to search is
available [http://github.com/bfirsh/django/commits/search],
which patches django’s ORM. This uses the existing full-text search
in your database.

Useful Haystack Patterns

Registration

The registration pattern of the admin allows you to unobtrusively
make models searchable (including code you don’t have access to).
This allows you to register Django Comments as searchable for
example, without forking the code base. This will look
similar to [http://haystacksearch.org/docs/tutorial.html#create-a-searchindex]
the admin:

from haystack import site
site.register(Note, NoteIndex)

Search Querysets

Haystack provides an
interface familiar [http://haystacksearch.org/docs/searchqueryset_api.html#why-follow-queryset]
to the Django ORM Queryset API. This gives you most of the commonly
used functions from the ORM, but allowing you to use them on
searches!

unfriendly_results = SearchQuerySet().exclude(content='hello').filter(content='world')
unfriendly_results.order_by('-pub_date')[:5]

It also gives you Search specific methods such as
boost and facet [http://haystacksearch.org/docs/searchqueryset_api.html#boost].

Class Based Views

In 1.2, hopefully generic views will be class based. Haystack
has an implementation [http://haystacksearch.org/docs/views_and_forms.html#views]
of these as well. Like any other kind of class, it provides the
easy ability to override functionality through subclassing.

This (simplified) example from
the source [http://github.com/toastdriven/django-haystack/blob/master/haystack/views.py#L119]
shows how easy it is to provide
extra context [http://haystacksearch.org/docs/views_and_forms.html#extra-context-self]
to a search view.

class FacetedSearchView(SearchView):
 def extra_context(self):
 extra = super(FacetedSearchView, self).extra_context()
 extra['facets'] = self.results.facet_counts()
 return extra

Pluggable Backends

Haystack currently supports three different search backends:
Whoosh, Xapian, and Solr. With a publicly documented backend API,
you can enjoy all of the power of the search engine of your choice,
by providing a backend for it!

HAYSTACK_SEARCH_ENGINE = 'solr'

Documentation

A shining light in the Django world is the documentation. It is
often talked about as being the biggest factor for how people learn
Django and love it is the documentation. Haystack is another
package with fantastic documentation. Here are a couple of little
gems that really show the quality and thought that has been put
into them:

	7 step tutorial [http://haystacksearch.org/docs/tutorial.html]

	Debugging Haystack [http://haystacksearch.org/docs/debugging.html#debugging-haystack]

	Best Practices [http://haystacksearch.org/docs/best_practices.html#best-practices]

	Reference [http://haystacksearch.org/docs/#reference]

The docs cover ways to improve your search and make it awesome, as
well as just helping you get the software set up and running. The
information is invaluable, and will help you make the search on
your site really great!

Are you using Haystack?

If I’m preaching to the choir and you already use Haystack, there
is a growing list [http://haystacksearch.org/docs/who_uses.html]
of users that are using haystack.
Daniel [http://toastdriven.com/] would love for you to contact
him, and get yourself added to the list.

Did I miss anything?

Let me know what you love (or hate) about Haystack. I think it
reuses a lot of the good patterns in Django, allowing people to
take knowledge they already have, and apply it to a new problem
domain easily. Is there anything that you don’t like, or something
that you love that I missed? Let me know in the comments!

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Correct way to handle default model fields.

With Kong, I have been trying to figure out a way to provide
overridden model defaults. At work, our pythonpath’s default to
/home/code, however your setup is probably different. It would
be useful if there was a simple way to let you override the
defaults for your Kong installation.

pythonpath = models.CharField(max_length=255, default="/home/code")

I received a pull request that put a KONG_PYTHONPATH_DEFAULT
setting, which would be read in as the default. However, it seems
like this doesn’t scale particularly well, and would be annoying if
you have 5-10 fields to make defaults for.

So I thought up a couple of different approaches to this problem,
and am curious if people have input, or a better way to solve
this.

One Big Setting

This would allow for a setting, but it would only be one setting
for all of the kong defaults. I’m thinking about a dict, where the
key is the model_field name, or just the field name. The key would
obviously be the default (or a callable that returns the default).

KONG_DEFAULTS = {
 'servername': 'ljworld.com',
 'pythonpath': '/home/code',
}

This would keep things in the settings, but not cause a huge amount
of settings bloat.

Specify a place to hold your defaults

Specify a setting along the lines of KONG_DEFAULT_PATH, which
would be a module on the pythonpath. I would import this module and
then try and pull the name of defaults from there. I would provide
a sane default in Kong for this, that would be an example of how to
do it.

KONG_DEFAULT_PATH = 'kong.defaults'

#kong/defaults.py
pythonpath = '/home/code'
servername = 'ljworld.com'

So you could set KONG_DEFALUT_PATH, and then redefine the
values there. This is basically defining a convention for setting
the default values on a model.

However, this is basically the same problem/solution as some kind
of application specific settings. I really think this would be
valuable, allowing reusable apps to specify default settings, and
then letting users override them

Storing it in the database

I could create a super simple model that would hold defaults for my
fields. This would allow the user to set the defaults in the
database, and then I could pass a callable to the default, which
would check for the existence of the model in the DB. This doesn’t
seem like a very good option, but would at least allow for
configurable changes without touching the code.

I’m probably DOIN’ IT WRONG

It seems like a subset of a larger problem, which is that it isn’t
easy to define application specific information. That is an ongoing
Django problem, without a good solution. I am imagining a third
party application that might make this process easier. Does anyone
have a good solution to this?

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Class Based Template Tags

The problem

In Django, template tags currently are separated between a Node
class and a “parsing function”. The parsing function takes the tag,
represented as a string, parses the input, and passes the correct
arguments to a Node class. The Node class then does whatever
rendering it does, or updating of the context, and then renders
itself in a form suitable for the template.

This is mainly by convention that there is a separation here
between the parsing and the Node. As I see it, there is no
particular reason that the Tag can’t be responsible for the parsing
and rendering itself. A lot of the time I find the parsing function
and the Node separated by hundreds of lines in a file, making it
hard to understand.

The proposed solution

We can combine the parsing and rendering of a node in a similar way
in something I call
Class Based Template Tags [http://classbasedtemplatetags.bikeshed.com/].
This allows the template tag to be able to parse and render
itself.

I have an example in
my playground [http://github.com/ericholscher/django-playground/blob/8f3a6908f35afa66166a07a6b3e89cf1696c3afc/nodes.py#L40]
over at github. They are based around a lot of the ideas in
django-template-utils [http://bitbucket.org/ubernostrum/django-template-utils/src/].
Specifically, this example will be recreating the
get_latest_objects [http://bitbucket.org/ubernostrum/django-template-utils/src/tip/template_utils/templatetags/generic_content.py#cl-66]
tag from that package.

class ClassBasedTag(template.Node):
 """
 Tag that combined parsing and rendering

 Subclasses should define ``render_content()`` and ``parse_content()``.
 """

 def __call__(self, parser, token):
 self.token = token
 self.parser = parser
 return self

 def render(self, context):
 self.context = context
 self.parsed = self.parse_content(self.parser, self.token)
 return self.render_content(context)

 def parse_content(self, parser, token):
 """
 This is called to parse the incoming context.

 It's return value will be set to self.parsed
 """
 raise NotImplementedError

 def render_content(self, context):
 """
 This is called to return a node to the template.

 It should return set things in the context or return
 whatever representation is appropriate for the template.
 """
 raise NotImplementedError

As you can see, this tag combined the concepts of Parsing and
Rendering a tag into the same place. The parse_content and
render_content are equivalent to the current Django way of
doing a parsing function, and Node class render function. Currently
the render function depends on self.parsed being there, and not
being passed in, this is to keep the function arguments the same as
previous render functions. The code isn’t meant to be production
quality, more of a proof of concept.

A couple of gains are made from combining things together. First of
all is the fact that the code is right next to each other, as
mentioned earlier. However, it also allows you to subclass these
classes, and provide functionality that makes people’s lives
easier. Having the rendering and parsing in the same class also
allows for some trickery with passing around data, like mentioned,
which may be a good or a bad thing.

Let’s go ahead and show an example of an implementation of this
type of tag.

class GetContentTag(ClassBasedTag):

 def parse_content(self, parser, token):
 bits = token.contents.split()
 return (bits[1], 1, bits[3])

 def render_content(self, context):
 model, pk, varname = self.parsed
 self.pk = template.Variable(pk)
 self.varname = varname
 self.model = get_model(*model.split('.'))
 context[self.varname] = self.model._default_manager.get(pk=self.pk.resolve(context))

register.tag('get_latest_content', GetContentTag())

This tag is used in the following manner:

{% get_latest_content news.story as latest_story %}

As you can see, I think it makes it nice and concise to be able to
have the parsing and the rendering of a tag right there in the same
place.

This code is a very simplified use case for the idea. It is
basically the simplest possible thing that could work. I will
expand on the ways that this idea gives us a lot of power and
flexibility over our Template Tags in the future, but I think this
idea stands well on it’s own.

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Making Template Tag Parsing Easier

In my
previous post [http://ericholscher.com/blog/2009/nov/3/class-based-template-tags/]
about template tags, I discussed the two steps required for
template tags. Today I will be focusing on Parsing of template
tags, and how they may be improved in the framework of Class Based
Template Tags from yesterday. I have talked about
problems with template parsing [http://ericholscher.com/blog/2008/nov/8/problem-django-template-tags/]
in the past as well. This post will offer 2 different approaches to
making parsing better.

I would like to thank Cody [http://codysoyland.com/blog/] and
Chris [http://www.unbearablecomics.com/blog/] who were involved
in a slightly drunken conversation that led to these tags. Chris
actually wrote the other neat parsing implementation that I will
talk about today. Cody wrote the underpinnings of that
implementation as well.

Note: Both of these approaches are more Proof of Concepts, and
the code probably shows. Please don’t knock implementations, and
just think about the ideas housed within.

Parsing from above - A DSL approach

I’m going to go ahead and start talking about an approach to
parsing template tags that was pointed out in yesterday’s comments.
It takes surlex [http://github.com/codysoyland/surlex] which is
made for easily parsing URL’s, and applies it to the concept of
parsing template tags.

In the tag_utils [http://github.com/chrisdickinson/tag_utils/]
package, I looked at
the tests [http://github.com/chrisdickinson/tag_utils/blob/master/tag_utils/tests.py#L60],
because they make great documentation. Here is an example of a
tag definition [http://github.com/chrisdickinson/tag_utils/blob/master/tag_utils/tests.py#L74].

p = ParsedNode('test', '<arg1:int> <arg2:string> <kw:kwarg>', test_expected)
register.tag('test', p)

This defines a tag called test, which parses an int, string, and
kwarg from a surlex expression. The third argument is a function
that is executed on the arguments on rendering.

This allows you in your test_expected function, to act on the
arguments that are defined inside of the surlex expression. A
trivial example of the test_expected function is:

def test_expected(context, arg1, arg2, kw=None):
 print "Got %s and %s" % (arg1, arg2)

So if you called the tag {% test 1 racoon %}, it would print
out Got 1 and racoon.

This is an interesting way to provide a sort of DSL on top of the
current mess that is parsing of template tags. I really like how it
reuses Surlex, which was made for parsing URLs. However, parsing
template tags is a similar task, and it works well here too!

I could imagine this easily being bolted on to the approach from
yesterday, which might allow for easier subclassing and reuse of
the parsing functions.

Parsing based on keywords

An approach that I have talked about in the past is basically a
subset of the above idea. It allows you to define kwarg type
arguments for your tags, and have them magically parsed out for
you. An example of this is my own
SelfParsingTag [http://github.com/ericholscher/django-playground/blob/master/nodes.py#L74].
The following lines allow you to specify what arguments your tag
will accept.

def __init__(self, required_tags=[]):
 if not required_tags:
 self.required_tags = self._get_tags()
 else:
 self.required_tags = required_tags

def _get_tags(self):
 return []

So you can either define the _get_tags function, or pass the
allowed tags into the call when you make the tag. The following 2
bits of code are equivalent.

class GetContentTag(SelfParsingNode):
 def _get_tags(self):
 return ['as', 'for', 'limit']
register.tag('get_latest_content', GetContentTag())

#Is the same as the following:

class GetContentTag(SelfParsingNode):
 pass
register.tag('get_latest_content', GetContentTag(['as', 'for', 'limit']))

Once the Tag knows what it arguments it will be accepting, it
parses them [http://github.com/ericholscher/django-playground/blob/master/nodes.py#L13].

def parse_content(self, parser, token):
 parsed = parse_ttag(token, self.required_tags)
 for tag, val in parsed.items():
 setattr(self, '_' + tag, val)
 return parsed

This effectively sets a private varible on the tag to the value of
the arg. So for example, if the tag was called
{% sweet_tag for news.story as my_stories limit 10 %}, then
self._for would equal news.story, and so on. It also
returns the parsed values as a dictionary. There are a lot of
improvements that could be made to parse_ttag, but it works as
a basic implementation.

This approach allows us to implement a tag really easily. If you
want a (silly) tag that just updated the context with whatever
value you input, you could make a simple tag. It would be used
{% my_tag with "awesome text" as context_var %}

class SimpleContextTag(SelfParsingTag):
 def _get_tags(self):
 return ['with', 'as']

 def render_content(self, tags, context):
 for tag in self.required_tags:
 context.update({tag['as']: tags['with']})

register.tag('my_tag', SimpleContextTag())

To implement the get_latest_object code from yesterday, we can
skip all of the parsing steps.

class GetContentTag(SelfParsingTag):
 def _get_tags(self):
 return ['as', 'for', 'limit']

 def render_content(self, context):
 self.model = get_model(*self._for.split('.'))
 if self.model is None:
 raise template.TemplateSyntaxError("Generic content tag got invalid model: %s" % model)
 query_set = self.model._default_manager.all()
 context[self._as] = list(query_set[:self._limit])

register.tag('get_latest_object', GetContentTag())

Which is better?

To be truthful, I like the Surlex approach better than my own. It
seems to have a lot of the benefits of mine, but with added
flexibility. However, that does come with the implementation being
a bit more complex. It brings some really neat ideas forward about
how template tags might be handled differently. It allows for
optional arguments, does basic type checking (based on it’s regex
nature), and ensures that the order of the arguments is the same.

I could imagine some kind of dispatch based template tag scheme
that has a list of URLs, basically like the URLConf and view
structure. I think that this problem has a lot more depth to it,
and hopefully by pointing out a couple of different ways of solving
it, and looking at it, we can improve the situation.

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Adding testing to pip

Python packaging has been in a bit of a state of disarray for as
long as I’ve been using it. Pip has come along to make installing
python packages easier. It has a lot of features that are useful,
but they have been talked about in many other blog posts.

Today I want to talk about adding testing to pip. If you are
familiar with the Perl community, then you probably know about
CPAN [http://cpan.org/]. It is basically Pypi for Perl. They
have a command, called cpan, which allows you to install packages
in a similar way to pip.

One of the steps that a package goes through before being installed
on your system is that the tests are run. This allows you to know
if the package that you have installed is actually going to work on
your system. It may be broken on your platform, or you may be
missing a library that it thought you had. Currently, pip has no
way to test packages when they are being installed. I went looking
for a way to make that happen.

It should be noted that pip is based on setuptools. Setuptools is
what parses and understands most of the logic inside of your
setup() function in the setup.py for your project (which you have,
right?). Setuptools has an option called test_suite, which
allows you to run
setup.py test [http://peak.telecommunity.com/DevCenter/setuptools#test-build-package-and-run-a-unittest-suite]
on your package, and have it run the unit tests. This is done by
calling whatever python function is defined in test_suite.

I added the ability for pip to run setup.py test on a package
that it is installing. It is executed by running
pip install --test <package>. The implementation is on a
ticket [http://bitbucket.org/ianb/pip/issue/11/allow-tests-to-be-run-upon-install#]
on bitbucket, and in a
repository [http://github.com/ericholscher/pip/tree/test_command]
on github.

If you want to check it out, go ahead and clone my repo and check
out the test_command branch. Then you can simply run

python pip.py install --test wsgiref

for an example package. If a package doesn’t have a test_suite,
then it simply doesn’t run anything.

Note that if the tests fail, it doesn’t impact the installation of
the package. The python community’s tests aren’t quite good
enough,and almost any Django package you try this on will not have
any tests. I wrote about how to
add testing to your django package [http://ericholscher.com/blog/2009/jun/29/enable-setuppy-test-your-django-apps/],
but the process is long and involved. I’m working to improve the
situation for Django and hopefully having the ability to run tests
in the package management tool will spur people to add testing
ability to their setup scripts!

Nose [http://somethingaboutorange.com/mrl/projects/nose/0.11.1/]
makes this really easy, by simply adding
test_suite = 'nose.collector' to your setup.py, nose will run
your tests correctly. This is the level of support that I am hoping
to implement for Django.

On a side node, I talked to
Ian Bicking [http://blog.ianbicking.org/] about this, and he
suggested writing the test command as a separate command, so you
would be able to do pip test wsgiref, if it was installed. This
has some other problems, which I will talk about after I have
implemented this functionality.

I would love to hear feedback, or if anyone has ideas for improving
testing in the python and django communities. I have lots of ideas,
and I will be writing more of them up over the following weeks.

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Large Problems in Django, Mostly Solved: Database Migrations

Continuing in the series of big problems that are mostly solved, we
have database migrations. A couple days ago I talked about
Search [http://ericholscher.com/blog/2009/nov/2/large-problems-django-mostly-solved/].

Database Migrations

Database Migrations are an interesting piece of the Django
community. Rails has the functionality built in, but Django
currently relies on third party apps for this functionality. One of
the core philosophies about not including apps in the Django core
is that ideas percolate better in the fast release environment
outside of the core. When something goes into core, it is
automatically seen as blessed, and will certainly become the
defacto answer to a problem. Leaving things outside allows multiple
different implementations to develop (as they did), and for one to
become the standard (which it has). Along the way it has picked up
ideas from others, and now provides a good answer to migrations.

South

South [http://south.aeracode.org/] has emerged as the obvious
choice for database migrations in the Django community. We use it
in production at work at the Journal World, and it has served us
well.

I have talked about south in the past, using it to
migrate test fixtures [http://ericholscher.com/blog/2009/jun/11/migrating-test-fixtures-using-south/].
This serves as a basic tutorial and introduction into south as
well.

Main Features

Automatic Migrations

Most of the migrations that I write, I
don’t write [http://south.aeracode.org/wiki/About#AutomaticMigrationCreation]
a single line of code. South has the ability to how you model
looked at the end of your last migration, and then extrapolate what
has changed (in most simple and modestly complex cases). There are
obviously times that it falls down, but for simple addition,
deletion, and modification of fields it has worked almost
flawlessly for me. With a simple command, it will do all your work
for you.

django-admin.py migrate app_name --auto

It has problems with Generic Foreign Keys and a couple of other
more complex models. However, I would say that it absolutely nails
the 80% case that most migrations fall in to.

Fake ORM (“ORM Freezing”)

This is a feature that South has grown from it’s
Migratory [http://bitbucket.org/DeadWisdom/migratory/wiki/Home]
roots. I think it is one of the best conceptual features for
migrations. It allows you to use a Fake ORM (the real ORM, applied
to the aforementioned fake models), to do data transformation in
your migrations. This example from the
tutorial [http://south.aeracode.org/wiki/Tutorial3] shows the
value:

def forwards(self, orm):
 for adopter in orm.Adopter.objects.all():
 try:
 adopter.first_name, adopter.last_name = adopter.name.split(" ", 1)
 except ValueError:
 adopter.first_name, adopter.last_name = adopter.name, ""
 adopter.save()

Database Independent

This sounds like an obvious feature, but a lot of the approaches
for migrations were only viable on one database. The support for
SQLite is still lacking, but that is because of fundamental
limitations in the way SQLite works. Most people using SQLite can
just wipe their database and start over, if not, you should
probably be using another database.

It knows when you’ve been naughty

South
keeps track [http://south.aeracode.org/wiki/About#MissingMigrations]
of all the migrations that you have run, and it intelligently
informs you if you have missed a migration. It also supports
inter-dependencies on migrations. This allows you to be safe in
your knowledge that your migrations will be run properly, and that
state is maintained. This sounds like a hand-wavey feature, but
when you’re migrating your data, knowing when things aren’t quite
right is a nice feeling!

South also keeps track of the migrations that are on disk, and
won’t let you migrate if they are different than previous runs.
This makes sure that you aren’t running against a different version
of the code; allowing you to be sure that the migrations being run
are correct.

Conclusion

Overall, south solves a lot of the problems about migrations in a
good way. There have been other solutions to the migration problem,
and I think that south has taken most of the good ideas and
combined them in one place. It has some drawbacks still, but
overall it is the best of breed in Django for Database Migrations.
If you are looking for a migration tool for Django, this is your
best bet.

There aren’t a lot of flashy features in the migration realm I feel. Mostly you just want something that keeps your data safe, and allows you to write migrations as simply and foolproof as possible.
South lets you do that, so I consider it a win.

I view migrations somewhere along the lines of testing. It is one
of those things that once you have, you don’t see how you ever
lived without it. Being able to immediately see the state of your
database, what migrations haven’t been run, and what all needs to
happen is incredibly useful. Having a safety net of repeatable
migrations also ensures that your databases are all the same,
across many installations and machines. The value of database
migrations are many, and South brings them to you in a nice
package.

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Correct way to handle mobile browsers

At work, a lot of our sites have
sweet [http://m.ljworld.com/marketplace/all/]
mobile [http://m.kusports.com/]
versions [http://m.lawrence.com]. The problem is how to educate
people of their existence. Currently we just have little ads that
show up on the site that promote the mobile site, which seems a
subpar solution. So I was tasked with doing providing a way to
redirect to the mobile sites. Luckily, as a lot of the time with
Django, most of my work was done for me.

Minidetector [http://code.google.com/p/minidetector/] is a
Django reusable app that allows you to know if a request is being
viewed on a mobile device. It provides a middleware and a view
decorator that sets a request.mobile variable to True if the
request is coming from a mobile device. It’s
method [http://code.google.com/p/minidetector/source/browse/trunk/minidetector/__init__.py#11]
of figuring out if a device is mobile is simple; It first checks
for a special Opera Mini header, then for WAP support, then finally
checks the User Agent against a
list of known mobile strings [http://code.google.com/p/minidetector/source/browse/trunk/minidetector/search_strings.txt].

So at work I have implemented a simple way to promote the mobile
sites through redirecting, allowing for a couple of different use
cases. This has lead to a problem that a lot of internet sites
face, and I haven’t found a good solution to the problem:
how do I redirect users to a mobile site?

Obviously, you should keep the request path, so that when you
go to SITE/blog/2009, you get redirected to m.SITE/blog/2009. A lot
of sites actually chop off the request path, bringing you to the
mobile home page!

The use case

The use case I am thinking about is a user that is using twitter,
and they click on a lot of links to a site, through a mobile
browser. They should be gentley introduced to the existance of the
mobile site, and have the ability to always have mobile links go to
the mobile site. However, they should also have the ability to say
‘never show me the mobile site’ as well.

Three approaches

No Redirects

I see two basic approaches to the problem. The first is that we
don’t automatically redirect anyone to our mobile sites. We are
able to detect if they are identifying as a mobile browser, so we
can show them a message about our mobile site, and let them
choose.

An option could be made to allow a user to say “Always redirect me”
if they enjoy usage of the mobile site. This seems to allow the
user to get expected behavior, but allow them to choose to use the
mobile site on their mobile device if they want. However, you run
into the problem of users ignoring the message about the mobile
site, or just not caring enough to click it.

Redirect once (opt in)

Redirect once is the plan where you redirect the user once, and
then set a cookie to never redirect them again. This allows the
mobile user to get a glimpse of your mobile site the first time
they visit, and can then choose to visit in the future.

You can also allow them to set a cookie to automatically redirect
all of their mobile requests in the future. This allows the user to
get a glimpse of the mobile site, and see if they want to use it.
Then based on this experience, they can choose to visit it by
default if they want.

Always redirect (opt out)

The third option is to always redirect mobile browsers to the
mobile site, with the ability to go back to the main site. You
would have a setting that the user could set to never be
redirected. This is more of a ‘all mobile users will use our mobile
site, unless they choose not to’. I don’t know if the mobile web is
quite there yet (for example, we don’t have a mobile version for
every page), and it might lead to user confusion.

What do you think?

I think that redirecting the user on their first visit on a mobile
browser is a good idea. This introduces them to the mobile site,
and by setting a cookie on that redirect, you can be sure that they
won’t be redirected again. Then you can have an opt in cookie, that
basically says redirect me every time. This makes it do what people
expect most of the time, while still allowing the choice to always
be redirected.

Have you implemented mobile redirecting before on a site? How have
you solves this problem? Am I missing some obvious solution that
handles all these cases gracefully?

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

America...*sigh*

A picture is worth a thousand (horribly said) words :)

via Five things i saw in america which freaked out a canadian

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Hackers and Painters

Just finished reading Hackers and Painters by Paul Graham. It was
an amazing book about the past, present, and future of computers.
Lots of stuff about programming, but also fulfilling for people
that don’t know much about computers as well looking outside in. It
explains a lot and is an amazing read. Paul Graham is an amazing
Essayist and it shines through in this book. It contains 15
unrelated essays, and is highly recommended.

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Weekend

Lost the weekend and this week in web land. A friend came to visit,
everyone came back from break, and classes are starting. I will
begin posting regularly again. I read 3 books in the last 2 weeks,
which I posted about earlier. On Intelligence is amazing and has
set my mind racing, expect some good posts coming up in the next
week or two based off of reflection on that.

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Iowa

Tomorrow is the Democratic caucus in Iowa. I’m really hoping that
Obama wins, or basically anyone but Clinton. I believe that Edwards
and Obama have the best chance of actually returning this country
to it’s basic morals and values, and I certainly plan to vote for
whichever of them wins this primary. I also believe that if Clinton
wins, then it will be the first time in history that an independant
could possibly win the White House. (Obama/Edwards, or Obama/Paul
perhaps?). Here’s hoping that faith and morality wins out in this
crazy world of ours, and a chance to put America back in it’s
rightful place as a law-abiding and moral country.

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

My dad was wikipedia

For most of my life my dad has been my wikipedia. Long before it
existed, anything I had a question about, I could ask him and be
assured to either be given an insightful answer, or a logically
thought out answer that amazingly always seemed to be correct. I
think this is the basis for the constant curiosity that still
exists in myself.

When you can ask why about everything and be given an answer, it
only leads to more why’s. An analogy to the academics dilemma. The
more you know, the more you know you don’t know. I had a
never-ending stream of why’s and a never-ending stream of answers.
Looking back I find this to be one of the greatest influences in my
life thus far.

The killer feature of wikipedia will be when it can understand my
questions and provide insight into them. Searching and
link-following are great and all, but the inherent context matching
of intelligence that can be provided by a real live human is
unmatched by computer.

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

OCR with context

OCR should use context, when it sees the word ‘everythxxg’, it
should know that the ‘xx’ is ‘in’. This is how the human brain
works, and is how the computer should work too. If Google can
suggest spelling suggestions to my misspelled words, there is no
reason that this technology couldn’t be applied to OCR. It would
make it much more powerful and useful.

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Facebook Scrapage

I’m thinking about how to implement facebook’s social graph in my
Events calendar application. It would be a big boon for my site if
when people signed up, they could automatically have their facebook
friends imported as their friends on my site. However, I don’t like
the idea of having to have the person give me their login
information to do this. (This is what OAuth is for!).

However, facebook lets me see all of the people at Mary Washington
on it, and it lets me look at all of their friends. I’m thinking
that I might be able to scrape facebook automatically when someone
signs up, using my account, to atleast import basic information
about their friends. This isn’t as easy or useful as a full API
that facebook could easily provide, but it would be a start, and a
cool app to write!

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Facebook Update

Funny, Scoble just got banned from facebook for doing exactly what
I was talking about doing. Damned social information silos..

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Earthquakes in politics

An interesting opinion piece that I read at work in the NY Times
today. Talks about how Obama and Huckabee both embody vastly
different philosophies of government than the previous established
order. It gives me hope to hear them discribed that way. Hopefully
the existing governmental structures won’t sink their hopes and
dreams for this once-great country of ours. Two Earthquakes

Related, a blog I read linked to a quote from Huckabee about
education that I found inspirational, showing his very interesting
and worthy outlook.

From Iowa winner Mike Huckabee: “Education is only a true education
if we’re developing both the left and right brain of the student .
. . . Take a room of 5-year-olds and give them a piece of paper and
crayon and every one of them draws a picture. When he’s 15 that kid
won’t draw the picture or sing the song. Somehow the education
system beat out of him or her the creativity that was innate in
that student.”

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

OpenID FTW

This is why OpenID is such a good idea.

URL based Identifiers

It talks about how we should use URLs instead of E-mail as
identifiers for ourselves. When someone gets ahold of your e-mail,
they can spam the hell out of you. E-mail inherintly has no way
built into it to identify who the send is, so you have to accept
ALL e-mail, and then use other mechanisms to sort out the stuff you
want. With URLs, if you get my URL you get nothing. You know who I
am, but that doesn’t inherintly give you any way to contact me. If
you are my friend and you can prove to me that you own a URL that I
know you own, I can then allow you to contact me. This inverts the
basic premise of E-mail, allows for authenticatin, eliminates spam,
and is just a good idea. I’ll put my URL on my business card, and
then I’ll decide what information you get about me based on other
critera.

This is a very powerful idea, and has the potential to change the
paradigm of web interaction. That’s why I’m learning about openID
and such!

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Cool Music Video

Never heard of a band called Battle before. They have a really neat
video that I got pointed to from a really cool advertising blog

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Code on Launchpad

The code for the website is now located on launchpad. I am using
their bazaar version control system that is kick ass. It’s a
Distributed VCS which means that you can run it completely locally,
without a server. I use the server of course, but it allows you to
do work on your code without internet access and other neat
things.

Also testing an update to the Django basic blog that should allow
blog posts to show up without restarting the server (big bug!)

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Books to read

Just posting some books that I want to read this upcoming
semester.

Structure and interpretation of computer program (free html
version): The quintessential book on computer programming. It’s a
classic and I feel like I should read it just to say that I have
and to understand the basic theory of computing presented easily.
The book opens with an amazing dedication that I would like to
share.

This book is dedicated, in respect and admiration, to the spirit
that lives in the computer.

``I think that it’s extraordinarily important that we in computer
science keep fun in computing. When it started out, it was an awful
lot of fun. Of course, the paying customers got shafted every now
and then, and after a while we began to take their complaints
seriously. We began to feel as if we really were responsible for
the successful, error-free perfect use of these machines. I don’t
think we are. I think we’re responsible for stretching them,
setting them off in new directions, and keeping fun in the house. I
hope the field of computer science never loses its sense of fun.
Above all, I hope we don’t become missionaries. Don’t feel as if
you’re Bible salesmen. The world has too many of those already.
What you know about computing other people will learn. Don’t feel
as if the key to successful computing is only in your hands. What’s
in your hands, I think and hope, is intelligence: the ability to
see the machine as more than when you were first led up to it, that
you can make it more.’’ -Alan J. Perlis (April 1, 1922-February 7,
1990)

Inspirational on many-a-level.

On Intelligence: This is an AI book that I heard about through a
blog. Sounds really interesting, and is applicable to my Events
website. I am trying to do some neat stuff with
tagging/hierarchical structure of data, so understanding the best
ways to store data (intelligence) on a computer would be good.

Hackers & Painters: This is a book by Paul Graham that I have read
most of the essays from. But it looks amazing and I want to read it
all in printed form. It talks about how Programmers are really
artists, which is a theory I subscribe to, and hopefully that book
will give me the vocabulary and authority to have that conversation
with people and not have them look at me funny :)

Lucky for me the awesome UMW library has all three books. Yey!

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

NCUR 22

I got accepted into NCUR. The National Conference on Undergraduate
Research. Here is my abstract. I get to have at least the abstract
published, and maybe the entire paper that I write in support of my
project, still not sure how it works. UMW is paying for me to go,
which is amazing. It should be an awesome opportunity to meet some
people in my field doing interesting things. The presentation there
is the weekend after my Honors Project presentation that I have to
do to graduate with honors. The timing works out well :)

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Bill Clinton

Saw Bill Clinton speak on campus today. It was awesome! He is such
a great public speaker. It’s amazing to hear a politician say
logical things, backed up with numbers, and actually agree with
their general ideas. What a concept. He hasn’t made me want to vote
for Hilary Clinton over Obama (certainly the point), but if she
does win over Obama, I will feel genuinely better about voting for
her in the national election. Bill is an amazing speaker, and was
funny and serious at the correct times. Very well done. It lasted
over an hour, and the turnout was amazing. There was a line halfway
down our entire campus! Very cool.

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Security Vulnerabilities on the Internet

I was reading an article on LWN about security vulnerabilities on
newly shipped machines. The qualm is that the same place that the
updates for vulnerabilities come from is the same place where you
are going to get infected. They are asking if there isn’t possibly
a better way to do it. I think there is:

Don’t let the user use network facing services until the system is
patched. When the user first gets the machine, don’t let
ftp/ssh/etc. connect and give them a warning that they have to
update their systems before they can have access to the internet.
This will keep them protected until their machine has a chance to
update, with the update mechanism the only way for them to be
infected.

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Graduate

Was talking to an old friend today. My friend Shane who graduate
from Georgia Tech with a degree in Electrical Engineering. He’s
currently in Cali, with a cool job somewhat related to his major. I
was talking to him about the current situation (graduation
approaches),and he has an amazingly apt drawing.

RocketShip

Cheers.

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Job hunt

Starting the good ol’ job hunt. Trying to figure out what I’m going
to be doing with myself for the next couple years of my life. Big
ol’ decision that it is.

I’m seriously considering continuing on with my current job at
CACI. It is an awesome job with awesome people. I work with good
kids, and my bosses and everything else is really good. The main
downside is my moral dilemma of working for the government. I’m
technically working for a defense contractor, working on a portal
for on-base use. So I’m not doing anything except allowing the
government to communicate with themselves better; which with my
view of the inefficiencies of government, could be seen as a good
goal.

I’m looking at places out in Cali, Kansas (the makes of Django!),
and Australia very strongly. I want to be in a neat place, with
good culture and good waves :) Too much of my life has been lived
without surfing, so I need to get back to it. It’s one of my true
passions in life, and cannot be suppressed much longer. I also want
to be in a college town, because that breeds culture and cool
people. Plus I do someday want to be a teacher or at least an
adjunct at a school, which requires an advanced degree. So being
near a good college would allow me to go to said college easier ;)

I’ve been throwing lots of my old projects back up on my website,
in working order. They are all Perl programs, and bring me back to
my roots. It’s amazing that I wrote a couple of them in high
school! I feel like my college years have not been as useful in
side projects, but that can be easily explained. For one, I’ve
gotten a degree in CS! Lots of my time has been devoted to
learning, and school projects that are academic in nature but
important none-the-less. A couple of my updates have in fact been
school projects, or independent studies, which is good. I see the
progression in my skill as a coder and general “computer scientist”
to be a natural and linear progression. All of the baby steps I
took earlier in my career have enabled me the through understanding
of the mechanisms now at my disposal.

Been trying to find time to actually update my resume. Tinkering
with my old code to get it working again is good fun, resume
writing is about the polar opposite. It’s coming along though, and
is a work in progress. It’s interesting writing a resume for myself
because it differs from most other people I know in fundamental
ways. As my friend Jeff said: “You have marketable skills, lucky”.
Technical resumes are awesome in that regard. Lots of languages
with lots of years of experience is a good things.

However, my main problem that I’ve been struggling with is how to
convey my passion for the craft in my resume. I feel that it is
intrinsic, and people will be able to see it. The whole getting my
CompTIA Linux+ certification in high school, and doing the lyrics
program to scratch an itch are good indicators. However, I can’t
help but feel that there are more design-oriented and literary
aspects that I could use.

Upon reflection (aka writing it down..neat, knew there was a reason
I did that) I presume that these feelings are more of a lack of
control and understanding. My limited skills in the design and
literary fields breed insecurities in my understanding of their
use. I assume there are ways that I could represent myself
differently if I had those skills, but I guess you can’t have
everything right? The always present academics dilemma: The more
you learn, the more you learn you don’t know...

Cheers and wish me luck, should be an interesting couple of
months.

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Awesome 3d

This is an amazing video of some dynamic 3d work a guy did for his
PhD Thesis. Johnny Lee is a PhD student at CMU, and he modified a
display to use the wiimote and a special headset to give real 3D
effects. It actually changes the picture on the screen based on
your proximity and angle to the screen. Amazing.

<embed src=”http://www.youtube.com/v/Jd3-eiid-Uw&rel=1&border=0”
type=”application/x-shockwave-flash” wmode=”transparent”width=”425”
height=”355”>

via zdnet

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Perfect Abstraction

Here in computer science land, the quest is for the perfect
abstraction. That’s what our job is anyway, Software Engineer my
ass, more like lead abstraction implementer. This quest for the
perfect abstraction is never-ending, and certainly cannot be
attained by humans. We aren’t capable of creating bug-free
software, so our abstractions will be inherently leaky. If it
wasn’t leaky, then it wouldn’t be abstracted.

Today I was doing some brainstorming in class and came to the
conclusion that paper is the perfect abstraction for our minds. The
ideas, words, or pictures that you put on a piece of paper have
meaning. However, the way that you put them down only has meaning
to you. Others might be able to grasp why it is laid out the way it
is, but true free form brainstorming I feel is inherently
meaningful, but the ideas cannot be translated easily. It has some
abstract meaning to you, but the meaning is in the relation of the
objects on the paper and in your head. Presumably if the ideas
could be laid out more succinctly with words they would have been.
So in the terms of abstraction perfection, I think that it is one
of the few examples we have of a perfect abstraction.

Of course, this means that you assume the brain, if only we could
do that in CompSci. It would make things a lot easier :) Perfect
cognitive relations are out of reach for a little while longer...

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Website Interface Design

I plan to design the events site through the lense of the user. The
UI philosophy is thought about in that way. We don’t ask how to
design a page about adding an event to the calendar. We ask what
the user wants to do when putting something on the calendar. What
are the use cases of the calendar, why is the user there. This ties
in with what makes our cal better than other cals. Trying to make
the UI amazing.

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Why I love the CLI

Simple example. I walked into my room today to a picture
screensaver which is awesome. Aparently it uses the Pictures folder
on the Desktop, of which only my latest pictures are in. I want it
to use all of them...

rm Pictures ln -s /store/pics Pictures

With tab completion.

All my pictures are now there :)

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Time to use that education

Okay people. Here’s a proposal for you. Let’s change this school of
ours. For my Senior project at UMW I’m creating an “Events”
calendar for the school and fredericksburg community, if you’re
interested in that, read below.

=========QUOTE=========

This website has a couple of different goals that I would like to
tell you about.

The first and biggest goal of this website is for people to use it.
I want people to enjoy using this website, and find it useful.
Without that none of the other goals could possibly be
accomplished.

The second goal is to provide a central repository for events that
are happening in this area. When someone asks ‘What is going on
tonight?’, I want my site to be the first thing that comes to mind.
If someone asks you, it should be obvious to say to check this
website. That function in our community is currently not being
served, and I hope that this site becomes that very tool.

The third goal of this website is to connect the Mary Washington
and Fredericksburg communities. Currently, there is very little
interaction, at least on an institutional level between our great
school and great local communities. I wish to foster this
relationship, and allow Mary Washington students to be immersed in
the great culture that surrounds them here in this great town.

=======END BS======

Sound good? Okay, that’s where you come in...

We’re going to college, and I hope for the right reason. We love
what we do! I know that’s true for me, and for others of you as
well. We all have our own special talents and skills, and I have a
lot of faith in my friends. I want to extend this offering to all
of you to hopefully be a part of something awesome. I know this
sounds cheesy, but have faith. I will make a badass website, and
you can help me.

I need help in some of the following areas, but that is nothing
compared to what could be accomplished. Give me your ideas,
feedback, and other things. The site isn’t public quite yet, but if
you ask nicely I’ll throw you a link. It should be launching in 3-4
weeks, at least for a some-what private beta. Your help would be
greatly appreciated.

Marketing: People need to know about the site...Else nobody will
use it. The more people that use the site, the more useful it
becomes. It is already useful in it’s vanilla state (as an events
aggregater for the local community), but with people using it,
adding events, and all the other planned interactions then it will
become so much better...I can provide generic events for big
venues, but people are required for the local knowledge of the
Dixie Jims playing the Hot Dog Opera downtown, or Junk Science
playing the loft last Thursday.

Design: I’m a technical person, I can’t design my way out of a box.
I need critiques and other stuff from people who know their shit.
From color schemes to spacing of text on a page, I know some people
live for that stuff. Any help is greatly appreciated. The current
look is fredericksburg themed, and that is here to stay, but any
cool photographs or idea for integrating the city more into the
design is muchly appreciated.

Writing: Lots of you fools are great writers (yea liberal arts!).
The best way to get people to remember cool things (this site) is a
story. You can tell them, and people want to hear them. I want to
talk about some cool ways of expressing all the shit I said above
better, and in more memorable ways.

Awesomeness in general: IDEAS!!!

The point of this post is multiple. One is that once this is
public, I have to do it or I look like a fool. Two is to get people
talking about it. Have a conversation about it, come up with ideas.
Yell at me or buy me a beer, any thought on this problem is
progress.

Thanks for your time...

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Obama & Va

I’m really excited that Obama “won” Super Tuesday. He got more
states and more votes, and has been declared the winner, even
though Hilary is only like 5 votes behind. I’m glad that Virginia
is actually important this primary season, and I think this is the
first time I will ever vote. I have never had a good reason to vote
before, but Obama is such an inspiration. As is almost cliche these
days, he is actually inspiring me to get out and vote! That is no
small undertaking, and I believe a large part of how he is doing so
well. Young people aren’t apathetic, all previous candidates have
just been God Awful.

I also love this onion piece about the candidates and their stances
on Iraq, so funny.

Hillary Clinton: “I would never have voted for the war had we known
it would become unpopular.”

In closing, here’s to kicking out Bush! :) The original homeland
security

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Work this week

At work this week I’ve been tasked with using PL/SQL (Oracles
version of SQL scripting) to create traverse a tree structure
stored in a database. The data is stored in a simple tree, with
each node having an id, and a parent_id. When the parent_id is
null, then that means it is a root node. This structure will be
used to display navigational links for pages in an automatic
fashion.

I found a couple useful websites that have helped me do this, so
I’ll link them here for future reference.

Traversing Trees in SQL

SQL Tree and Graph Algorithms

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Sweet ads

I’ve always been a fan of those ads where one things leads to
another to another without intervention. I’m sure there’s a name
for it, but you know what i’m talking about. Just found this neat
one online from a dutch website, which is simply awesome!

Watch it and see

It reminds me of the honda commerical they did a couple years ago,
using all the parts of the car. Simply stunning..

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Another neat ad

This is a really cool Ford ad. I’m glad companies are starting to
understand that commericals are content too. If you make them worth
watching, they will get spread and your message will be heard a lot
more places. Somebody has been listening to Seth Godin :)

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

All majors are the same

Had an interesting conversation with my roomate Mike last night. It
helped me clarify something I have always understood, but never
found a good way to say. This is probably going to be another
failed attempt, but here goes.

All majors in college are generally the same. You are learning the
same ideas in a different context. Mike is writing ‘something’,
using changing channels on a television to represent changing of
ideas. He is playing with all of the points of view, from first to
third, and then on to ‘fourth’ and fifth as well. In talking about
the style that he is writing I began to look at it through my
computer science viewpoint on things. Viewing the writing in levels
of abstractions, arranged in a hierarchy, starting from the first
person point of view on the bottom and working up.

This got me thinking about the top level of both of our majors. It
is generally assumed that English and Computer Science majors are
about as far apart on the spectrum of brain workings as you can
get, but not the way I see it. My take on writing is that it is one
level above computers in the abstract hierarchy of everything. A
programming language and a spoken language perform the same
operation, but the programming language is limited by hardware. The
English language is the programming language of our brain, and it
offers the utmost flexibility. You can do anything with words and
ideas (thanks metaphor). Computers are one way of limiting that
excellent flexibility.

Good design embraces constraints, and the technical constraints
provided by a computer allow me a frame of reference. I embrace the
computer because of its technical nature. It is the closest thing
that humans are gotten to constructing an artificial brain. AI
being a huge area of study in computers. So computer science is
simply learning to think like a computer. The programming language
that you use to program a computer is also how you think about a
computer. An analogy in spoken language: there are ideas in German
that can’t be expressed in English. The constraint of language
doesn’t allow one to conceptualize some part of that idea.

The brain is the hardware that English majors write for. The
computer is my hardware. We are using the same ideas just applied
through a different lens.

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Crazy times

Only have 2 weeks left until presenting at NCUR. I give my honors
project presentation to the UMW Compsci faculty on the Wednesday
before the conference. Lots of work to do, but enjoying it. Getting
to really dig into Django and learn it and understand it’s
modularity is awesome. I’m super busy and it feels like real life
is starting...Should be a fun endless summer.

PS Text editors are also cool in a GUI mode over an X connection.
You only update one tiny little place on the screen at a time, and
doesn’t reload much of anything. Works much better than firefox,
which is quite the opposite.

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Predictive text FTW

I am just starting to use Gnome Do, and it’s amazing. You hit
(windows key) + space, and it pops up a little window where you
give it commands. It tries to figure out what you mean when you
type a certain combination of words, and remembers what you usually
do on those combos, and does that in the future.

Eventually this could replace my entire need for a command line, in
a much more intuitive and user friendly sense. Getting instant
feedback, and seeing where you can stop typing into the command
gives you a “free hint” as to the minimum amount of typing required
to perform an action.

Presumably all actions can’t be condensed down into a simple
combination of 3-4 keystrokes (the level where you see a noticable
time savings), so only the most commonly used actions will be
useful for this (the whole learning from you thing). I believe that
if somehow you incorporated context into the choice when you are
figuring out what to call from what combination of letters, you
could solve that problem....The hard part, defining the context.

I think that for example, since I’m writing a blog post, and I type
(after calling Gnome do) ‘sp’, then I want to check the SPelling of
whatever I’m typing. However, if I’m inside my mail application (or
G-mail if you want to get fancy), ‘sp’ means SPam, either that this
is spam, or call the spam dialog (or whatever I usually do when I
type spam(while viewing a message, or from the Start screen)). This
was a trivial example, but it lead to a very easy analogy. I feel
that this concept could be extended almost indefinitely, with the
only limitation being on how we define context, and how smart the
algorithm is.

If the algorithm gets good enough, you get to stop typing the
shortcut.

Edit: I feel this is the same way that spam filtering currently
works. Look at all of the incoming mail, and look for patterns in
it. If you dont’ define an “action” and a “recipient”, then the
input becomes one item, dependent on the context. I think you could
adapt a Bayesian algorithm to do this very thing. (Completely
ignorant on how Bayesian filters actually work, could be way off
point).

I also believe the major downfall of this idea is the concept of
“modes”. Modes are generally a bad thing, and having all of this
context will confuse some people. If they don’t understand the
different contexts, and doing the same thing has different results
sometimes, they will consider it “broken”. I think the visual
feedback provided by the program will be crucial in how this is
interpreted. Having the feedback will allow the person to know what
the program is going to do. Also, some visual representation of the
current context (like a favicon in the corner) will allow them to
understand what context their in, and why the program is doing what
it is doing.

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

My Second Poem Ever

Watched Dead Poets Society about 3 times in the last 2 weeks, and
was inspired in the ways of rhyme and rhythm. Here’s a poem,
loosely based on one of my favorite quotes..”The more you know, the
more you know you don’t know”..

Untitled.

When the Light out is stronger than the light within.

Don’t be afraid to let it begin.

The torch of knowledge, torch of soul.

The torch neverending. Light; a toll.

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Browser Login Discovery

There are some really cool ideas floating around the interwebs
these days, dealing with discovery of authentication. A lot of the
talk is about integrating OpenID into the browser, but I don’t
think it needs to be limited to that. People are working on good
ways to auto-discover what the login end-points are on some pages.
So when I go to ericholscher.com, there will be a specific URL to
go to that will list the places where you can login, and what they
support. For example: /authEnds.xml would say that /account/login/
is the endpoint of login on my site.

I feel that this could be builtin to the browser. That wouldn’t be
too hard, but I think we can do it with already existing
technologies. All of the major browsers currently support saving of
passwords for logins on a site. This means that they know what
page, and what domain they are on, for the correct login
information to be displayed. Why can’t we make a Firefox extension
that does:

Land on a page. Search saved passwords for that domain. If a saved
password exists, display a small dropdown box to ask if we would
like to login (if we aren’t already). Submit saved login
information to the saved login form destination. PROFIT!

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Power through conversation

I feel that I am most able to convey my ideas and gain new ones
through conversation. Viewing a blog as a conversation is
interesting, but I have yet to gain the same value through a blog
as a good conversation in real life. I feel like I ask good
questions, and have a skill in the ability to conduct conversation
well. I feel that this is a good skill, and not something that
needs to be changed. I guess the new skill that needs to be learned
is how to make online ‘conversations’ more like the real life ones
described above.

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Graduation

Three days until graduation. I’m getting really excited. Getting
all of my stuff in order to go out to Kansas, and enjoying the rest
of my summer. I’ll start posting more frequently soon hopefully,
since I’ll have lots of free time, and need to be getting into
programming mode for my job. Super super super excited about life
right now!!!

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Lawrence Day 1

FRICKIN SWEET. What a cool town. Couple random things made my day
today.

First was the guy walking around downtown just giving everyone
peace signs. Eyeing them down until they looked at him, and people
gave him peace signs back! It was so funny and random, and just
made my day. What a great community of people.

The second was the random drum circle in downtown. There were about
3 or 4 people sitting around playing Djembe’s in the downtown (I
almost said Djangos haha). Not asking for money or anything, but
just chillin and providing good music for the people. Very cool.

The third was the guy from the video game store out on the street
selling $1 N64 and SNES games. I didn’t buy any because I owned
most of the ones he was selling, but damn that’s awesome.

Had a great day just driving around the town checkin stuff out.
They have 3 disc golf courses, which is awesome. Went out to
Clinton Lake and the place is gorgeous. There seems to be a
swimming area, but it was in the pay section of the park and I
didn’t have any cash.

My house is amazing. I get the biggest room and my window goes out
onto the porch roof so I get my own private huge little balcony
area. The house is beautiful, Victorian and old. Wood floors in the
bedrooms, and lots of cool decorations. I setup a few of my
treasured belongings around the house and it already feels like
home.

Went out last night with one roommate and their friends and got
along great, had a great time. Then went with Emily (my aussie
friend) and Jake to see Friday the 13th at midnight, on Friday the
13th at the local really cool theater. Great first night!

Here’s to more good times. Cheers!

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Goodbye East Coast part 1

Hey world, how goes? This is part 1 of 3 in my whirlwind trip
around the East coast. This is the trip to Boston, Part 2 is the
trip around Virginia, and Part 3 is Maryland. Here goes nothing!

I graduated! and I’m moving to (fucking) Kansas! Just took an
awesome trip around the East Coast, since I won’t have a chance to
do it for another little while.

The first trip was to Boston and was awesomely coincidental. The
day after graduation there was a Radiohead show at the Nissan
Pavilion. I decided to give myself a graduation present and head to
that. My friend Emily was going, and her friend from New Hampshire
was coming down to go. So my roommate josh and I went with them to
the show. (It’s annoying when your friends have no online presence,
can’t link their names to anything except facebook, and I refuse to
do that).

The show was AMAZING, it was pouring down rain and we had lawn
seats. The experience was epic, the crowd huddled together in the
rain for the love of the music. On the ride back from the show we
were talking about life, and it turned out that Elliot went to
school just south of Boston, and happened to be looking for someone
to share gas money with on his ride back. He was leaving that
Thursday, and I found myself a ride to Boston. I went online and
realized that Barcamp Boston was happening the same weekend. SCORE!
Now I have something to do, and a free ride there. All I needed was
a place to stay.

My roommate Staiti and my good friend Johnny Mac are both
Massholes, so I asked them if they had any recommendations for
accommodation. J mac set me up with his friend Drew who lives in
Cambridge and goes to Emerson college. I got his number and my
whirlwind trip to Boston was off.

We left Thursday afternoon (avoiding rush hour in NoVA and DC) and
got into Boston around 4am Friday morning. The dorms at Elliot’s
college were empty, so I got to crash in my own bed in my own room,
double score. I hopped on the commuter rail into Boston the next
morning, and called Drew. I got into Central Station in Cambridge
and met Drew and his roommate at Whole Foods. I walked in the door
and they had Orangina for sale for cheap! Super double ultra Triple
Score! Orangina is like crack to me, and it’s expensive and hard to
find in Va.

So we go back to their awesome apartment (old brick and beautiful),
and it turns out one of their roommates is in the Middle East for a
couple weeks, and I get my own bedroom, with a TV, stereo, queen
sized bed, etc. SET UP. So I crashed there for 4 days, taking a
train home on Monday at 9pm. The trip was awesome and I got to know
those kids really well. (It’s so nice having friends with friends
that you know you can get along with, laid back people FTW!)

I went to Barcamp on both Saturday and Sunday and it was amazing.
I’ve never been to anything like it, and it was an amazing
experience. I met lots of like minded, incredibly intelligent
people. A very novel feeling to be able to relate to people on a
technical and social level. Lots of good connections made for
hopefully starting a company in the future, and knowing amazing
people. Namely Jonathan and Simon. One starting a startup, and the
other already having a pretty successful one. Jay was also another
interesting person, and he gave a really neat presentation about
the intersection of everything. I could go on all day about all the
neat people that I met, but those were the ones I got to talk to
the most.

It was interesting being in a place where most people were
representing someone. I was representing myself, but also was able
to add legitimacy to myself saying that I was going to be working
for the World Company (makes of Django). It was interesting how
conversations changed tone a little bit with that ounce of
reputation. It was a very real experiment in the conversion between
student and professional (and if it keeps going like that, it won’t
be a very hard transition). I look like a student and could play
that card, and also have informed discussion about technical topics
with a slightly more authoritative stance (hardly, but I noticed a
slight change).

I really loved the community as well. If the people at the
conference were any indication of my career choice, I think I
picked the right career. I’ve known that for a while, but some
outside validation is always nice as well. I’ve considered myself
good at what I do (and knowledgeable in conversation about most
things nerdy), but have never really had it put to the test.
Getting job offers from two leading Python companies in doing what
I want to do was some good outside validation, but events like this
prove to be more so. The “thrown to the lions” approach, and very
telling about how much you know.

I fell in love with Boston and could see myself living there
someday. Seems like the San Fran of the East. The train ride back
was at night and I slept most of the time, and only cost $80,
probably cheaper than driving. The Amtrak had power outlets, but no
Wifi. It was nice to have room to work on the laptop, with power,
and having no internet actually lets you get more work done.

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

JOB!!

Eek! The job starts Monday! That is like, 36 hours from now. I’m
really excited and slightly nervous. The excited feeling comes from
the place I’ll be working. For posterities sake, here is the series
of interactions that landed me the job:

Senior Project

Start using Django and Python to learn the Python language. Fall in
love with Django pretty close to the beginning of the project.

Thanksgiving

I read most of the Django documentation PDF in the Virgin Islands
over break, and really fall in love.

April

Start applying for jobs, and decide to work with Perl or Python.
Decide working with Django would be awesome! The people who
invented it are hiring, why not go straight to the source...

Their job posting

Unofficially, the job description is “build cool shit.” Our goals
are nothing short of being the coolest and most innovative web
teams in the world. We’re the people newsrooms come to when they
need to implement special features and new sites, but we do a whole
lot more:
Full Posting [http://www.mediaphormedia.com/jobs/developer/]

Sounds awesome!

My e-mail to them

Title: Junior Developer with extreme ass-kicking skills

Body: I’ve been a huge fan of LAMP style development for a good 4
years. I started using Perl and have switched to using Django and
Python for my latest project (very impressed). I attached my
resume, and my current site is http://www.fredvents.com It still
isn’t launched, but getting closer everyday. I’ve heard a lot about
Lawrence from my friend I met from there while studying aboard in
Australia. Wakarusa is a big draw, as well as the amazing music
scene.

My resume is attached with more examples of my work and other
formalities.

Cheers, Eric Holscher

And the rest is history waiting to be made! I start Monday!!!

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Things I say all the time

I just got around to updating my profiles and online stuffs
(Graduating, Moving, and getting a new job will do that!). I just
updated my “about me” section, and threw in some things that I say
way too often (My friends can vouch for this). Anyway, I think they
say a lot about me (and are said a lot by me)...

Awkward is a state of mind.

I don’t believe in Boredom.

Do what you love; Love what you do.

Appreciate the present!

Cheers!

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Bear Head

My house just got a bear head. It is about 2.5 feet fall, and real.
It came from a museum. My house rules.

That is all.

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Change of RSS address

Hey all, anyone who is getting this content on an RSS reader, if
you could please update your links to point at
http://feeds.feedburner.com/EricsThoughts . I’m starting to use
feedburner, and i can change that to where ever i’ll be blogging,
so that’s the last RSS url you’ll need for me. :) Thanks!

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Living well

Loving Lawrence still. I haven’t had to fill up my gas tank since
I’ve been in town. My car probably hasn’t moved in about 3 days. I
have established a pretty good schedule, and I have been living
really well.

I’ve been riding my bike to work all week, and it’s been awesome.
It’s only about a mile and it’s a really pretty ride. I can either
go through downtown, or through the old neighborhoods in Lawrence.
Win-win I say. Tuesday and Friday afternoon’s we play pickup soccer
in South Park, and that’s been going really well. I forgot how much
I love playing soccer (played for 12+ years), and the only reason I
stopped was because I hurt my knees. I’m hoping I don’t re-injure
myself, because that will mess up all my healthy activity. Now I
just need to start actually working out and lifting some weights.

There are lots of awesome cheap * nights in town because of the
fact it’s a college town. Here are a couple of the bigger one’s
that I’ve happened upon so far. Monday’s: $1 bowling games, $.30
wings at the bowling alley. $1.75 pints at the Free State Brewery
(Best Damn Brewery in Kansas!) Tuesday: 2 for 1 Ice Cream at the
Ice Cream place downtown! I’m sure there’s more, but I can’t think
of them right now. But those make the beginning of the week
awesome!

Plus my job is awesome. Working with great people doing interesting
stuffs. :)

Cheers!!

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

DjangoCon September 6-7, at Google!

Heard from Robert Lofthouse on Twitter. The Djangocon 2008
conference will be held at Google Campus (Googleplex) in Mountain
View!! September 6 and 7th. That’s only two months away, so
hopefully this gets pulled together well.

The Official Post announcing DjangoCon. The DjangoCon website
should be up on friday.

The DjangoCon Website

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Automating tests in Django

Updated

At work lately we’ve been writing a bunch of tests for all of the
work we’ve been doing. This is generally a good thing (tm). I was
getting tired of manually having to write all of the code to test
the views inside of my app. So I decide to write a little app that
helps me automate the writing of tests.

I wrote a piece of middleware (that should obviously only be used
during development!) that shadows the current activity in django
into a log file. This log file should then be ready to copy and
paste into a doctest for easy testing of your views. This is a
little hard to explain, but the code should be pretty self
explanitory.

I created a
`google code project <http://code.google.com/p/django-testmaker/>`_for
it so that people can go ahead and hack on it and make it better.
It is pretty rudimentary at current, but it gets the job done.

I think a big win from this approach is that your testing data is
much more “real”, since it’s a copy of your session with a real
browser. I know writing django tests I sometimes use contrived data
because it is a pain to enter it all. This should help improve on
that situation.

Here is a video of it in action, this should allow it to make more
sense.

Django TestMaker from Eric Holscher on Vimeo.

Writeup

Figured it would be good to writeup the screencast.

Step 1: Get django-testmaker
svn checkout http://django-testmaker.googlecode.com/svn/trunk/ django-testmaker-read-only

Make sure the testmaker module is in your PYTHONPATH.

Step 2: Add
'testmaker.middleware.testmaker.TestMakerMiddleware',

to your MIDDLEWARE_CLASSES in your settings file.

Step 3: Run the test server with the middleware installed.
./manage.py runserver

Browse around your site.

Step 4: run tail -f /tmp/testmaker.log

to see your output.

Step 5: Take the output from testmaker.log and put it into a file
in PROJECT/tests.py. Make sure that your tests.py contains:

"""
>>> from django.core.management import call_command
>>> call_command('loaddata', 'PATH/TO/PROJECT/fixtures/PROJECT.json', verbosity=0)
>>> from django.test import Client
>>> c = Client()
YOUR TESTS GOES HERE
"""

at the top of your tests.py file.

Step 6: Run the command
./manage.py dumpdata > PROEJCT/fixtures/PROJECT.json

You can have dumpdata just dump the data for a single project if
you provide PROJECT as an argument to it. Be warned though, that
the tests might break because of it using data from other apps.
(Like my example would break because the mine project uses data
from my blog app.)

Step 7: ./manage.py test PROJECT

Step 8: PROFIT!!

Update

I added a management command to the project to simply this process
a ton. I’ll be making another screencast and blog post (and maybe
even some REAL DOCS!) tonight, so stay tuned for that.

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Testmaker .002 (Even easier automated testing in Django)

Okay, Well I have been hacking away at django-testmaker for the
last couple of days based on some ideas from the community. It has
gotten a lot better, so here is another blog post showing what’s
new.

First let me just say how awesome the Django community is, and I am
really beginning to understand (and appreciate!) the open source
ethos. I would never have gotten this code this good in 3 days
without releasing it to the public. Thanks everyone for looking
over it and giving feedback!

New stuffs

Testmaker got a management command! Now you don’t have to worry
about messing with your middlware and having to take out the
testmaker stuff when in production. You simply add testmaker to
your INSTALLED_APPS and away you go.

Here is another video of it in action:

Django Testmaker v2

How to make it work

Step 1: Add testmaker to your INSTALLED_APPS settings.

Step 2: In the directory above the APP that you want to test, run
./manage.py testmaker -a APP

This should tell you where it is logging to, and where the fixture
files are going. It should only make fixtures once, so if you
change something in your database, you need to go ahead and delete
the old fixtures file and it will re-create a new one. It also has
3rd grade file-naming heuristics built in. So if a tests directory
exists in your project, it will log to APP-testmaker.py, if there
is no tests.py in your APP directory, it will put itself in that
file. If you have an existing tests.py file, it will make a
tests-testmaker.py file. You will then need to take the contents of
this file and integrate it into your normal tests. In a future
version if it encounters a tests.py, it may make a tests directory
and put both files inside of that, but I don’t know if that is a
good idea.

Step 3: Once you have reconciled the above changes (only necessary
if you previously had a tests.py file in your APP directory)
./manage.py test APP

Then you have awesome base-line tests for your app.

In my release post I had some comments about the usefulness of
these tests. I think that it is a very useful thing if you have an
existing body of code with no tests. This will give you a
non-trivial base to then at least have tests for your code.

Testing all of your views will also presumably alert you to errors
introduced in your models and URLConf files as well. Having
dedicated tests to testing models is still better and a good idea,
but this code will at least give you a good starting point.

Being able to automate a base-line level of tests for an app will
hopefully make people more inclined to include these basic tests in
their apps, and everyone knows tests are better than no tests.

Known issues

There are also a few problems that I’ve had with the output. It
appears Satchmo is hijacking the logging module on output? If
anyone knows a good way to fix this, please let me know.

Also, the POSTing stuff hasn’t been well tested, so there might be
a few bugs in that, it is pretty rudimentary.

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Beatles Lecture

This is a video from Gardner Campbell, one of the best professors
ever, English Professor at the University of Mary Washington.

It is a talk about the Beatles...Elequent, engaging, and
breathtaking, an amazing talk.

Enjoy it

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Jim Henson before Sesame Street

I’m currently reading Malcolm Gladwell’s Tipping Point, and it is
an amazing book. One thing that he mentions is that the Muppets
were actually used by Jim Henson before Sesame Street to do
advertising! I never knew this, and find it fascinating. There are
a bunch on youtube that some posted. Great stuff!

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

DjangoCon 2008

It is being kinda announced about DjangoCon 2008! It is going to be
in the Bay Area and sometime around the release of Django 1.0 in
September. I heard about it a couple days ago from Jacob at the
office (because I work at Mediaphormedia, birthplace of Django).
I’m really excited about it, and I’m thinking about heading out for
it. I have never been to the Bay Area. We’ll see how it pans out
when it gets announced, but I’m almost definitely going! YAY!!

Update: An official announcement should be made Monday or Tuesday,
including dates and location.

Check my post here for updates: DjangoCon: September 6-7,
GooglePlex

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Setting up Django and mod_wsgi

I was just convinced to setup mod_wsgi on my server instead of
mod_python, and I’m going to write up how I did it. All of the
documentation I found on the internet was really hard to follow, so
I’m going to distill it here the best that I can.

This is assuming Ubuntu 8.04 Server Edition.

Update: Take note, this is installing mod_wsgi 1.3. The latest
version of the package is 2.3. If you want to get the latest
version from apt, you should use the
Debian 2.3 package [http://packages.debian.org/unstable/python/libapache2-mod-wsgi]

Step 1: apt-get install libapache2-mod-wsgi

This should automatically install mod_wsgi into your apache
instance and install it.

Step 2: Create an apache directory on your filesystem, presumably
inside of your Django project. I keep my code in ~/Python/Project,
so I did:

mkdir ~/Python/PROJECT/apache
vim ~/Python/PROJECT/apache/django.wsgi

Then in that file you need to copy this code:

import os, sys
sys.path.append('/home/eric/Python/PROJECT')
os.environ['DJANGO_SETTINGS_MODULE'] = 'PROJECT.settings'
import django.core.handlers.wsgi
application = django.core.handlers.wsgi.WSGIHandler()

This creates an interface between Django and WSGI, as far as I can
tell. If you start getting errors about not seeing your project or
modules, try adjusting and/or adding some things to your sys.path.

Step 3:

Inside your /etc/apache2/ directoy, you will find the directory
sites-available/. This is where you are going to put your
configuration for your server. Presumably it will have a file
called default in it that you will edit. So:

In /etc/apache2/sites-available/default:

<VirtualHost *:80>
ServerAdmin eric@ericholscher.com
ServerName ericholscher.com
ServerAlias www.ericholscher.com
DocumentRoot /var/www/
LogLevel warn
WSGIDaemonProcess ericholscher processes=2 maximum-requests=500 threads=1
WSGIProcessGroup ericholscher
WSGIScriptAlias / /home/eric/Python/PROJECT/apache/django.wsgi
Alias /media /var/www/media/
</VirtualHost>

The last 3 lines of WSGI stuff if what you want to pay attention
to. You are pointing WSGIScriptAlias to the file we created in Step
2. The other two WSGI prompts aren’t necessary unless you are
running multiple sites on your server. The Alias is so that the
/media URLs on your site continue to work, it should point to where
ever you have your media files stored.

Hopefully this will get you started along the way to setting up
mod_wsgi on Apache with Django. If not, feel free to leave
comments or email me

EDIT: Someone in the comments pointed out this website on the
mod_wsgi wiki is also helpful: Integration with Django

There appears to be a page on the Django WIki as well if you need
more pointers.

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Using Mock objects in Django for testing the current date

Today I ran into a fun problem when writing template tags at work.
(I’ll write another post later on the fun-ness that is testing of
template tags :) In ellington we have some templatetags that test
for the current time of day. ifmorning, ifnight and so on. These
template tags are using datetime.datetime.now() to check to see if
the time is within a certain range. This is impossible to test in a
standard way without doing some hacking on the datetime.datetime
object.

The solution is actually pretty easy. Let me warn, although this is
the correct solution in this case,
monkeypatching is generally BAD. You don’t want to just be
playing around with python or django’s stdlib and breaking things
for other people. With that warning, let me show you how I went
about doing this.

This code is called in this fashion:

import unittest
class LoadDateutil(TemplateTestCase):
 def test_load(self):
 olddatetime = datetime.datetime
 datetime.datetime = make_datetime(5)
 self.assertEqual(self.render(u'{% load dateutil %}{% ifnight %}Hi{% endifnight %}'), u'')
 datetime.datetime = olddatetime

Now let me explain what all is going on here. TemplateTestCase is
an internal base class for doing templatetag tests. This will
probably be released (by me or
Matt Croydon [http://postneo.com]) sometime soonish.

The first thing you want to make sure you do is leave everything
how you found it. So before we go about editing the
datetime.datetime object, we save it into olddatetime, and
once we are done with the test, we return datetime.datetime
back to its original value. In the middle of the test, we are
calling datetime.datetime = make_datetime(5) which is returning
a datetime.datetime object that has it’s now() method overwritten.
The argument to make_datetime is the hour of the day you want
to represent.

Let’s take a look at how make_datetime is working:

import datetime
def make_datetime(hour):
 class MockDatetime(datetime.datetime):
 @classmethod
 def now(cls):
 return datetime.datetime(2007, 1, 1, hour)
 return MockDatetime

This code is creating the MockDatetime class, and then defining
the now() method. The @classmethod decorator must be used
because the now() method is a class method. Then the now() method
simply returns a datetime.datetime object with the correct hour
in it.

This is pretty simple, and is the correct and best way to do
testing of this nature. I hope this is helpful to someone out there
:) Also note that these methods are not django specific, and can be
used in anything with python.

As a caveat, make sure that the templatetag code you are running
this test against is importing the datetime module, and not
datetime.datetime, because in that instance this code will not work
(because the code we’re overwriting will be re-imported in the
templatetag (as far as I can tell))

Thanks to Malcolm [http://www.pointy-stick.com/blog/] for
helping me with this.

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Screencast: Debugging with the Django Error Page

This is part 1 of a week long series of screencasts

Hey Everyone, I’m here to make a minor announcement. In the
upcoming 7 days, I’m going to be releasing 5-7 screencasts on
Django, mostly focused on debugging, and hopefully trying to throw
in a couple of other useful ones that people might be interested
it. This is my own way of helping people get ready for 1.0 and
hopefully sharing some good tips on ways to use Django well. Please
add you own comments and tips to the end of the posts! Please
subscribe [http://feeds.feedburner.com/EricsThoughts] to my feed
to get all of the screencasts (It’ll be worth it!)

Also a big thanks to Simon Willison [http://simonwillison.net/]
who’s excellent debugging blog post got me started and interested
in this stuff.

Screencast 1

The first in the series is going to be how to use the Django error
page to it’s fullest. It is a very useful piece of work (Thanks
Wilson [http://www.wilsonminer.com/]).

Setup

*Please install
Django Command Extensions [http://code.google.com/p/django-command-extensions/]
and The Werkzeug Debugger [http://werkzeug.pocoo.org/] before
you go on.

svn checkout http://django-command-extensions.googlecode.com/svn/trunk/ django-command-extensions
easy_install Werkzeug

Make sure that they are installed (on your PYTHONPATH) before
continuing on.

Video

The full video can be downloaded
here [http://media.ericholscher.com/casts/Using%20Djangos%20Error%20Page.mov]
(18MB H.264 .mov)

Debugging with the Django error page from Eric Holscher on Vimeo.

Writeup

First off I fire up the debug server. Showing people how to use
assert False. You use assert False when you just want to
bring up a debug page to look at your context. It will bring up an
AssertionError at the point where you put this code.
assert False, foo brings up the error, showing whatever is in
foo on the top of the error page.

The debug page is really useful because it contains a lot of useful
information. It shows your entire ENVironment, including your GET,
POST, COOKIES, PYTHONPATH, and lots of other good data. This
information is really useful for debugging forms and session errors
especially.

I then showed how to post your error to
dpaste [http://dpaste.com/74331/] with one click in the error
page. This is really handy for sharing your errors and tracebacks
with people for them to help you debug your code.

“Part 2” of the screencast is about using the Werkzeug debugger for
more debugging power. The command to run the Werkzeug debugger
(with django-command-extensions) is:

./manage.py runserver_plus 67.207.139.9:8000 --settings settings_debug

with settings_debug.py being in the same file as your settings
(and the current directory) containing:

from settings import *
DEBUG = True
INTERNAL_IPS = ['YOUR_IP']

whatismyip.com [http://whatismyip.com] is a really handy utility
for getting your external IP address. Then once you restart your
debugging server, your error page should be the Werkzeug error
page!

The Werkzeug error page is similiar to the django one, it has a
traceback and all that good stuff. The killer feature however is
that you can open up a python console at any of the places in your
backtrace!

The dump() command inside the Werkzeug console is really handy.
It will output a prettyprinted version of whatever you pass in.
Allowing you to readily see what internal variables your object
that you’re debugging has.

Remember this is powerful! NEVER use this in production! People will have access to all your data!!
It is a very powerful debugging tool, which is a double-edged
sword.

PS: I hope you enjoyed me floundering in that later part. I thought
it showed the value in the debugger so I left it in :)

Stay tuned daily at my feed for posts everyday up until Django 1.0!
Cheers.

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Screencast 2: Logging in Django, for fun and profit

This is the second screencast of a week long series.

So that I don’t spam all of the Django Community Feed (Bad RSS
handling has done that more than once, Sorry!) I’m only going to be
posting this post and the last post summarizing all of the
screencasts on the aggregator. So if you’re trying to keep up with
all of the screencasts that will be coming out this week, either
stay tuned to the site or subscribe to my
feed [http://feeds.feedburner.com/EricsThoughts].

Screencast 2: Logging in Django

Setup

This screencast is going to be about how to use the python logging
module in Django. It’s in the Python standard library, so there is
nothing extra to install to use the simple python logging module.
The screencast also makes use of the excellent
Django-Logging [http://code.google.com/p/django-logging/], which
should be downloaded and installed beforehand.

svn checkout http://django-logging.googlecode.com/svn/trunk/ django-logging

This allows for you to follow along on the second part of the
screencast. I also do a little bit of work inside my
django-testmaker [http://code.google.com/p/django-testmaker/]
app, so you can go grab that if you want to follow along as well.
If not no big deal, the screencast is more about general logging
anyway.

Video and Download

The video is available to download in higher res or for streaming.

Download [http://media.ericholscher.com/casts/Using%20Logging%20in%20Django.mov]
(21MB H.264 .mov)

Screencast 2: Using Logging in Django from Eric Holscher on Vimeo.

Writeup

Part 1: python logging module

We start out with some really simple logging methods. The first is
a simple print statement inside of your views. This outputs the
command to the terminal in your development server. The next way to
do it is with a simple logging command:

import logging
logging.error('your error goes here!')

During the screencast I say that logging.error goes to Standard
Out, when in actuality it goes to Standard Error. In this case
they’re the same thing...Then I go through how logging is done
within the testmaker app. This is the basic setup for python’s
logging module that I used:

logging.basicConfig(level=logging.INFO,
 format='%(message)s',
 filename= "/file/to/log/to",
 filemode='w'
)

More documentation about this and the python logging module is
available here [http://docs.python.org/lib/module-logging.html]
It includes a lot of really good information about the logging
module, like
lots of message formatting options [http://docs.python.org/lib/node421.html].
I show how you can tail a log file from testmaker and talk about
the neat advanced features of the logging module like
logging across a network [http://docs.python.org/lib/network-logging.html].
As you can see the logging module is very powerful!

Part 2: django-logging

In the second part of the screencast we show how to use the Django
Logging middleware. This is what is going to go into your
settings_debug.py:

from settings import *
DEBUG = True
INTERNAL_IPS = ['YOUR.IP.HERE']
MIDDLEWARE_CLASSES += ('djangologging.middleware.LoggingMiddleware',)
LOGGING_LOG_SQL = True

This then has all of your logging output appended to the bottom of
the page you’re currently on. This gives you a similiar capability
of using the error page to debug, except you don’t have to have an
error. You can debug while the pages are still working.

The next and last really neat feature is showing the SQL queries
that are being executed to render a page. This is incredibly useful
for fine-tuning your django sites. With the ORM, there are tiny
little tweaks that you can sometimes make to decrease (or
increase!) the numbers of queries you execute pretty dramatically.
Having this enabled during development is a good way to catch those
mistakes, and really understand what is going on under the hood of
your Django apps.

Remember, when you wrap all of your logging stuff in the logging
module, you can do some really neat things after the fact. I was
able to use all of the django-logging stuff while still logging
output to a file and whatever else happened to be going on with the
logger at the time. This in incredibly powerful, and allows you to
almost have django-style ‘pluggable logging backends’ that do
different things.

Again in this one I end a little silly: Thanks for your time and
have a good day (since I’l hopefully see you again tomorrow :))

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Using pdb, the Python Debugger (Django Debugging Series, Part 3)

I had a couple of comments about my last post saying that I should
be sending all of the screencasts to the aggregator because this is
content and isn’t spam. So I’m going to do that. Thanks for all the
feedback everyone! Hope you’re enjoying the series.

Screencast 3

Setup

No setup today. pdb is included with python, so everything that you
need is available at a python install near you.

Video and Download

You can download the video
here [http://media.ericholscher.com/casts/Using%20pdb%20in%20Django%20views.mov]
(17MB mov)

Screencast 3: Using pdb from Eric Holscher on Vimeo.

Writeup

I started the show by talking about a little bash alias that I made
to be able to run the testserver from anywhere. Here is that code,
edit accordingly:

alias rs='/usr/bin/python ~/EH/manage.py runserver 67.207.139.9:8000 --settings settings_debug'

In order to get into the debugger, you need to call it inside of
any of your python code.

import pdb
pdb.set_trace()

Then I go in to talk about the basic
Pdb commands [http://docs.python.org/lib/debugger-commands.html]:

	l (list): Shows the current code around the line that your on.
The line that is about to be executed has a -> before it.

	n (next): Executes the current line and moves to the next in the
current file.

	c (continue): Finishes the debugging session. If there are more
breakpoints (or if your set_trace() code gets called again before
the request finishes) then you will get back to the debugger,
otherwise the requests will complete back to the browser.

	s (step): Goes down into the next level of execution (presumably
a different file). You can follow your code through Django’s
internals this way. This is really good for finding bugs and
getting a better understanding about how Django works.

	w (where): Shows you a backtrace of the calls that have gotten
you to the current point in the code execution. This is really
handy for the following 2 commands.

	u (up): Allows you to go up one level in the backtrace.

	d (down): Allows you to go down one level in the backtrace.
These two commands allow you to see where you came from, and what
variables were called where. This lets you see how the state ended
up the current way that it did, which is great for figuring out how
to fix it. :)

	locals(): This isn’t a debugger function, but it is really handy
for seeing what is in the current scope that you can muck around
with. locals().keys() is really nice too just to see the variables
that are there, because request tends to pollute the locals()
command.

I had about double the content that is in this screencast to talk
about pdb. It is incredibly powerful and there are lots of other
neat things you can do with it. This screencast was running a
decent length already, so I decided to split it into 2 parts. This
is more of the “Intro to pdb” part, and tomorrow, I will be
presenting a little bit more advanced/different use case for the
debugger.

Stay tuned and have a good labor day weekend if you’re in America.
Cheers!

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Easily packaging and distributing Django apps with setuptools and easy_install

First off let me say that I know that not everyone likes setuptools
and that is fine. distutils works well and is included with python.
However, I believe that Python needs to get some parity with what
Perl has with CPAN. Pypi [http://pypi.python.org/pypi] is
Python’s alternative, so tools that integrate with it are good.

Step 1: In the directory above the source directory of your
project, create a setup.py file. In that file put something like
this (editing for your project):

import ez_setup
ez_setup.use_setuptools()
from setuptools import setup, find_packages
setup(
 name = "django-testmaker",
 version = "0.1",
 packages = find_packages(),
 author = "Eric Holscher",
 author_email = "eric@ericholscher.com",
 description = "A package to help automate creation of testing in Django",
 url = "http://code.google.com/p/django-testmaker/",
 include_package_data = True
)

This is all that you need to do to really get your file in a state
to upload. name is the name that your package will go under on
Pypi, so choose something unique and descriptive. version is the
version of your app, it understands most common versioning schemes,
more info
here [http://peak.telecommunity.com/DevCenter/setuptools#specifying-your-project-s-version].
include_package_data makes sure that ez_setup.py gets included
in your package. find_packages() is a setuptools thing that
includes everything in the current directory that it thinks is a
python module, you can also simply put the name of your app there.

wget http://peak.telecommunity.com/dist/ez_setup.py

If you’re on a platform that doesn’t have wget, simply download
that file into the directory containing setup.py and your app. This
will make sure that the person who downloads your app has
setuptools installed. If they don’t, it will automatically be
installed.

Now run

$ python setup.py register
We need to know who you are, so please choose either:
 1. use your existing login,
 2. register as a new user,
 3. have the server generate a new password for you (and email it to you), or
 4. quit
Your selection [default 1]: 2
Username: whatever
Password:
 Confirm:
 EMail: your@email.com
You will receive an email shortly.
Follow the instructions in it to complete registration.

Obviously, if you already have an account, simply say 1 and login.
Finish the login procedure in your e-mail and then login on the
command line.

python setup.py register
Your selection [default 1]: 1
Username: whatever
Password:
Server response (200): OK
I can store your PyPI login so future submissions will be faster.
(the login will be stored in /home/eric/.pypirc)
Save your login (y/N)?y

Now you will be logged into Pypi and will be able to upload your
files. Then you want to upload your package to Pypi.

python setup.py sdist upload

This should output a bunch of code with your app being packaged.
The bottom of it should contain a 200 and say that it was
successfully uploaded.

running upload
Submitting dist/django-testmaker-0.1.tar.gz to http://pypi.python.org/pypi
Server response (200): OK

Congrats! Your code is now in Pypi! It can be seen and downloaded
by the world, and easily installed on people’s machines. If you
want to tell people how to install your app, it’s as easy as..

[sudo] easy_install django-testmaker

For some reason if easy_install doesn’t work, you can still resort
to installing things the old way. You can grab the code out of svn,
or take the package from Pypi, unzip it, and move the project
directory somewhere on your PYTHONPATH.

Let me know if this doesn’t work, of if I’ve missed something
obvious. This is my first work done packaging a django app. I
really think that it would help a lot if all django (and python in
general) apps were easily installable and listed at Pypi. Having
the directory really helps with people locating apps. Hopefully a
culture of apps getting put up on Pypi will make this reality a
little bit closer.

Setuptools [http://peak.telecommunity.com/DevCenter/setuptools]
can do a lot of neat things. Look at their site for more
information on advanced packaging (like dependencies and other
things).

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Screencast: Django Command Extensions

This is a screencast on the
Django Command Extensions [http://code.google.com/p/django-command-extensions/]
project. It is one of my favorite third party apps, and it gets
installed in every Django environment I work in. It provides a
plethora of useful manage.py commands, and a couple other little
goodies as well.

Setup

Before you get started using these things, there are a couple of
packages you need to install. The first is
Graphviz [http://www.graphviz.org/] which is a really nice
toolkit for graph visualization. The other is
Werkzeug [http://werkzeug.pocoo.org/] which is a little python
web framework with an amazing debugger that we’ll be using. There
can easily be installed:

apt-get install graphviz
easy_install Werkzeug

Video and Download

A high-res version of the video is available
here [http://media.ericholscher.com/casts/Django%20Command%20Extensions.mov]
(mov 21MB)

Django Command Extensions from Eric Holscher on Vimeo.

Writeup

The website for the django extensions has a pretty good list of all
of the commands that are available. Below I will just write about
the way to use some of them that isn’t well documented or a bit
different or unclear.

As a note, for things that output something to the screen, you can
redirect that output to a file really easily. For example:
./manage.py dumpscript blog > blog.py redirects the output to
blog.py. The command extensions site has a list of output formats
for export_emails
here [http://code.google.com/p/django-command-extensions/wiki/ExportEmails].
Which is really useful.

The command for graphviz is
/manage.py graph_models auth blog |dot -Tpng -o test.png

The output of graphviz is awesome. There are ways that you can hook
this up to a url in your URLConf so that it will be regenerated
whenever someone requests it (for data that changes often). That is
a really nice feature for data that is changing a lot, where
someone is watching over your work (school etc.).

Just to note, runserver_plus requires that you be running
DEBUG = True, and that your IP Adress is in INTERNAL_IPS,
look at my
(screencast)[http://ericholscher.com/blog/2008/aug/28/screencast-debugging-django-error-page/]
here for a full explanation of this, and more!

Things that weren’t covered in the screencast include sqldiff
which is still halfway working, and provides a diff against what
your model and the current database look like. create_app and
create_command are things that just flesh out the directory
structure for a new app or management command. create_superuser
creates a new supersuer for you. generate_secret_key gives you a
new secret key. passwd allows you to easily change a users
password. reset_db resets your current database.

Thanks for watching, and stay tuned for more screencasts (and other
content too ;))

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Getting started with Pinax

NOTE: This content is a little out of date. Some of the layout might be wrong, but the ideas are still relavent.

I went ahead today and figured that I would try out
Pinax [http://pinaxproject.com/], seeing as it’s been getting a
lot of good press in the Django community lately. The talk from
James Tauber at Djangocon was really good, and I certainly
recommend checking it out. This is going to be a basic introduction
to pinax.

First thing you need to do is grab the code from the pinax
repository.

svn checkout http://svn.pinaxproject.com/pinax/trunk/ pinax

Once you have the code checked out you are already half of the way
there. The only current external dependency is on PIL, the Python
Imaging Library. Django itself has this dependency for the
ImageField in forms. More than likely you already have this
installed, so it shouldn’t be a problem. If not, that is the only
dependency of Pinax.

The directory structure of Pinax is pretty simple, copying from the
README:

pinax/ contains a django project and templates
external_apps/ contains external re-usable apps brought in via svn:externals
local_apps/ contains re-usable apps that aren't yet externalized
core_apps/ contains non re-usable apps specific to pinax site
external_libs/ contains external libraries

The manage.py script inside of pinax links up all of the apps
correctly for you. So all you need to do to get started is go into
pinax/ and run ./manage.py syncdb. Then go ahead and run
./manage.py runserver and you should see the pinax welcome
page! That is pretty awesomely simple to get up and running!

At this point, you now basically have an entire social application
working on your box. That is pretty damn impressive. The pinax
directory is the project directory in this setup. Then, all you
have to do is swap out the templates, and you have your own site
with the exact same functionality.

The main use case for me with Pinax is to take the groundwork that
they’re layed and throw a little bit of custom code on top. That is
the goal of the project. They are trying to give you a really solid
base that provides all of the generic functionality that 99% of
websites need. From this base it is then incredibly easy and fast
to get “yet another X site” going, wherein you then add the magic
that makes your site unique.

A couple days ago I actually took my first Django site I’d ever
done and converted it over to Pinax. It took all of about two
hours, with the awesome help of James Tauber and Brian Rosner in
the #pinax IRC channel on Freenode. They were helpful and I
bemoaned the lack of documentation, so that’s why I’m writing this
up :) The site is now about 100x more powerful, and it’s really
cool the power of Pinax there.

I want to talk about my philosophy behind the usage of Pinax. The
way that I’ve been thinking about it is basically it gives you the
groundwork with some nice default templates for the apps. The way
that you go about skinning the app is with the base.html and
site_base.html in the pinax/templates/ directory.
base.html allows you to change the basic layout of the site.
This is where I changed out my CSS and Javscript code. Basically
you don’t want to be changing any of the block tags here, just
HTML. I ripped everything out of the <head> except for
<title> and {% block extra_head %}. In the <body> I
basically ripped everything out, and put in my previous template,
then adjusted the block tags to make them appropriate.

One of the big gotcha’s is the way that template blocks are named.
The pinax app templates are all coded to specific block names (as
they have to be), but if you’re trying to use existing templates
then you might need to update your blocks if you want to be able to
have the backend stuff “just work”. Here is a listing of the main
template block names and what they are. Remember, these simply need
to be present in your base.html, and they will be given content
in site_base.html.

{%block logo_link_image %} This is where your image goes (in the
header) {% block login %} Is where the login stuff goes (leave this
empty if you want to use their auth) {% block tabs %} Menu or tabs,
since it’s only used in base and site_base, this can really be
anything. {% block body %} This is where your main content goes. {%
block footer %} This is where you put the footer contents

A couple more gotchas:

	The pinax manage.py does a decent amount of editing of your
PYTHONPATH, so if you want to deploy it then you need to understand
how this works. Check out
this post [http://www.20seven.org/journal/2008/09/pinax-setup-and-deploy.html]
by Greg Newman for help with deployment!

	The media in pinax is served out of pinax/site_media and in
URLs are site_media, so you need to put all of your css and
javascript in there to get it working on the dev server. When you
deploy this can go back to where it was previously (assuming
previous install).

	At the bottom of the pinax settings file, you see it does an
import of localsettings. You can define your own settings than
override the pinax ones in a localsettings.py file anywhere on the
PYTHONPATH. This keeps you pretty safe from updating pinax and
having it wipe your settings in the default settings file.

	Remember this is still a work in progress, so the code will be
updated (and probably break backwards compatibility) pretty
frequently. Keep an eye on the
BackwardsIncompatibleChanges [http://code.google.com/p/django-hotclub/wiki/BackwardsIncompatibleChanges]

That’s enough for today. That should get you up and running with
Pinax. I will be doing a screencast on this stuff sometime this
weekend, so look out for that. It should make this a lot more
obvious.

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Using pdb to debug management commands and unit tests (Debugging Django Series,Part 4)

Screencast 4

Today’s screencast is about pdb again. This time we are going to be
debugging management commands, and unit tests for django. This is a
little bit more powerful than the previous screencast which just
introduced the basic debugging commands.

Setup

This screencast uses a couple of really handy pieces of software.
iPython [http://ipython.scipy.org/moin/] is a wonderful piece of
software for all python developers. It gives you handy things like
tab completion, syntax highlighting, and all the modern amenities
that we’re used to in our editor from the python shell. Django’s
manage.py shell even uses ipython if it detects it, that’s an
endorsement if i’ve ever heard one.

ipdb [http://pypi.python.org/pypi/ipdb] is a simple wrapper
around pdb that allows you to use ipython when you are doing your
debugging. This is really handy as well. To get the code for these
projects, go to their websites linked above or use the following
code:

bzr branch lp:ipython
easy_install ipdb

Download and Video

You can download the video
here [http://media.ericholscher.com/casts/Debugging%20management%20commands%20and%20unit%20tests.mov]
(20MB mov)

Debugging management commands and unit tests from Eric Holscher on
Vimeo.

Writeup

We start the screencast by breaking the testmaker management
command that I’ve written. We call it like this:

python -i ~/EH/manage.py testmaker 67.207.139.9:8000

The import thing to note is the -i, which tells python to drop
into the python (>>>) shell after the command is run. I then show
how to use pdb postmordem command to go back into the crashed
management command. This is called like so:

import pdb
pdb.pm()

and this allows you to actually go back into the previous command!
Even if pdb isn’t currently loaded at the time. This is a really
neat feature of the debugger, and incredibly useful for diagnosing
breakage that is hard to reproduce. You can go back up into the
application and see the actual state of the variables at that
time.

Next I introduce ipython [http://ipython.scipy.org/moin/] which
is a really nice python distribution. It has a really nice
debugger, called idpb, which gives you all the ipython commands
inside the debugger.

Next we go on to run testmaker with valid input after showing how
to do a simple fix to check if the input was correct. We call
ipython with an app passed in:

ipython ~/EH/manage.py testmaker 67.207.139.9:8000 -- -a mine

Note that – is meant to tell bash that the input is done for
ipython, and the rest will actually go to manage.py and into your
python code. This is good to know for trying to pass things into
management commands in ipython on the command line. This code will
generate tests and fixtures for the application inside of the mine/
directory. Once we browser around a little on the test server, we
have generated a unit test based on what we have done.

Assuming you have ipdb installed from
Pypi [http://pypi.python.org/pypi/ipdb/0.1dev-r1716], you can
include ipdb inside of your unit test (or any python file being
executed) and get the ipython debugger instead of vanilla pdb:

import ipdb
ipdb.set_trace()

Although I don’t expound on it inside of the screencast, getting
inside of tests is probably one of the more useful things you can
do with the debugger. Trying to debug tests is really difficult,
and sometimes they return really strange errors that are hard to
get a handle on. Sometimes the line numbers are also off, and
debugging doctests are notoriously hard to debug. You can debug
doctests just as easily, with the following code (using ipdb if
preferred):

>>> import pdb
>>> pdb.set_trace()

I figured out that the error in the unit test was actually due to a
stale fixture left over from a previous run of the testmaker app.
It didn’t have enough data to return a paginated list, so has_next
was false instead of true like when we ran it against the live
database.

In related news, searching for ipdb on google made me stumble onto
the The Internet Pinball Machine Database [http://ipdb.org],
which I didn’t know existed previously. Yess!

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Big list of Django tips (and some python tips too)

We were talking about things that we wish we had known before while
developing for Django the other day in IRC. I proclaimed that we
should write them down somewhere. So I’m writing a post to get this
effort started. Please feel free to leave comments with your own
tips and tricks, and I’ll compile them in some kind of good
fashion. These are mostly just pointers, and not full-blown
writeups, just more of a big list of stuff you should think about.
I think these tips will really help out new people when they’re
trying to get the hang of Django.

App level

Local library installation

When you don’t have root access on a machine, and you want to use
easy_install [http://peak.telecommunity.com/DevCenter/EasyInstall#id24],
you can install files into a designated directory. I use ~/lib to
hold my python modules, so when I do easy_install I simply use the
-d option like so:

easy_install -d ~/lib nose

Use iPython

IPython [http://ipython.scipy.org/moin/] is a python
distribution that gives you lots of handy features like tab
completion, syntax highlighting, better debugging, and lots of
other nice features. Poke around, I find more and more stuff I like
every time.

Use django command extensions

This is one project I use every time I do some new code. I wrote up
a
whole post and screencast [http://ericholscher.com/blog/2008/sep/12/screencast-django-command-extensions/]
about how good they are. They have gotten even better since then,
highly recommended.

Performance tips from the man himself

Jacob (co-BDFL) wrote up some
performance tips [http://www.jacobian.org/writing/2005/dec/12/django-performance-tips/]
back in ‘05 that are still relevant today. Some big architectural
stuff, but they still make sense.

Use mod_wsgi

mod_wsgi is currently the best way that I know of to run Django. I
did a simple
write up [http://ericholscher.com/blog/2008/jul/8/setting-django-and-mod_wsgi/]
a while back that has proved popular.

Running out of memory?

Web faction has a good
blog entry [http://blog.webfaction.com/tips-to-keep-your-django-mod-python-memory-usage-down]
about how to keep memory usage down. Might be useful even if you’re
not running on their hardware.

Use pdb

Pdb is a great debugger.
Simon [http://simonwillison.net/2008/May/22/debugging/] has a
great post on it, and I took a lot of his ideas and expanded them
to do my debugging django screencast series.
Using pdb [http://ericholscher.com/blog/2008/aug/31/using-pdb-python-debugger-django-debugging-series-/]

Read b-list.org archives

My tips here are short and sweet,
James [http://b-list.org/weblog/categories/django/] has a wealth
of amazingly informative Django information stowed away in his blog
archives. Do yourself a favor and peek through it and be
enlightened.

Don’t be afraid of Reusable apps

Watch [http://www.youtube.com/watch?v=A-S0tqpPga4] James’
presentation on Reusable apps at Djangocon. Learn it, and use it. A
lot of the functionality that you want to do has already been done
for you. Check out Pinax [http://pinaxproject.com/] which has a
ton of nice reusable apps.
django-basic-apps [http://code.google.com/p/django-basic-apps/]
also has a ton of really nice reusable apps that use best
practices. I use the blog here and it’s a great way to learn how to
use django well. Learn by other people’s awesome examples!

Watch the Djangocon videos

The
videos [http://www.youtube.com/view_play_list?p=D415FAF806EC47A1]
from Djangocon give you some great insights into Django.

Search and replace

Search and replace across an entire directory. This is useful for
changing template vars or doing basic refactoring (good editors
should do this for you too)

perl -pi -w -e 's/foo/bar/g' *.html

Check out virtualenv

virtualenv [http://pypi.python.org/pypi/virtualenv] is an
awesome python tool that allows you to create mini-sandboxes of
python. You can contain an entire django install (and supposedly
you can get mod_wsgi and some other stuff inside). I haven’t
played with it too much, but it sounds really nice to keep a
contained python environment, and allows you to run different
versions of libraries, django, and anything else you can think of.

Use Django snippets

Django snippets [http://djangosnippets.org] is a great place to
post your tips, or get other peoples code examples. It’s a big
cookbook of helpful and neat things about django. It doesn’t have
search, so use google’s site:djangosnippets.org syntax to find what
you need.

Use your environment!

I find that my .bash_profile file is a huge help for all Django
stuff I do. Here is an example or mine, I’m really curious about
other people’s awesome aliases and other settings foo.

export PYTHONPATH=$HOME/Python:$HOME/Python/Modules
export PATH=$HOME/bin:$PATH
export DJANGO_SETTINGS_MODULE="settings"
export HISTFILESIZE=10000000
set -o vi
alias rs='/usr/bin/python ~/EH/manage.py runserver 67.207.139.9:8000 --settings settings_debug'
alias mp='/usr/bin/python ~/EH/manage.py'
alias sp='/usr/bin/python ~/EH/manage.py shell_plus'
alias bkup='/usr/bin/python ~/EH/manage.py dumpdata'
alias destroy-pyc='find . -name *.pyc -delete'
alias mod='cd ~/Python/Modules'
alias dj='cd ~/Python/Modules/django-trunk'
alias a2='sudo /etc/init.d/apache2 restart'
alias tm='/usr/bin/python ~/EH/manage.py testmaker 67.207.139.9:8000 --settings settings_debug'
alias p='python'
alias x='exit'
alias tst='./manage.py test'

Models

Use managers for commonly accessed queries

Writing managers is really simple, and they provide a better user
interface to your code. This code snippet simply adds a latest()
method to the default objects manager

class ForecastDayManager(Manager):
 def __init__(self, *args, **kwargs):
 super(ForecastDayManager, self).__init__(*args, **kwargs)
 def latest(self):
 return self.get_query_set().order_by('forecast_date')[0]

It can be called ForecastDay.objects.latest(). This is a
trivial example, but there is a lot of power that lies in this
functionality.

Meta is your friend

You can define the default ordering of your model, so when it
returns things in a queryset you don’t need to do an order_by()
clause (like above).
Possible settings [http://docs.djangoproject.com/en/dev/ref/models/options/#ref-models-options].
If you set get_latest_by, the above code is already written for
you.

No really, Love meta.

Ever wonder where all of that lovely metadata that you have set
goes? It all gets stored in your objects _meta variable. Note the
underscore, this is private and might change at some future point.
However, a lot of it is stable and it gives you some really nice
things that you can get access to. _default_manager is a another
really nice one on query sets, this returns objects (or whatever
the default manager is). It’s really handy for writing re-usable
code.

Settings

Relative imports

When you are using a setting file multiple times, it is nice to be
able to define relative variables for your things.

import os
DIRNAME = os.path.dirname(__file__)
DATABASE_NAME = "%s/dev.db" % DIRNAME
MEDIA_URL = os.path.join(DIRNAME, 'media')
TEMPLATE_DIRS = (
DIRNAME + "templates",
)

more [http://rob.cogit8.org/blog/2008/Jun/20/django-and-relativity/]

Local settings

If you have local changes to your settings file, that you don’t
want to share, or that are specific to your box, there is an easy
way to accomplish that. Put this at the bottom of your settings.py
file:

try:
 from local_settings import *
except ImportError:
 pass

This allows you to define a local_settings.py in that same
directory (or on your pythonpath if you so feel). This can then
override (or add on to) the settings previously defined in the
file.

Use a settings debug file.

This kind of inverts the logic above, but runserver allows you to
pass it a settings command. So you can run runserver with the
command ./manage.py runserver --settings settings_debug and I
keep a settings_debug.py file sitting around that looks like
this:

DEBUG = True
INTERNAL_IPS = ['24.xxx.xxx.xx']
MIDDLEWARE_CLASSES += ('debug_toolbar.middleware.DebugToolbarMiddleware',)
INSTALLED_APPS += ('debug_toolbar',)

This allows me to keep my normal (production) settings file from
ever having DEBUG set to True. That way there’s no way to run with
it in production. The other things are just good easy way to
maintain some stuff that is useful for debugging/testing, but you
don’t want to include in your normal production server.

Views

Wrapping generic views

It’s really easy to use generic views in Django. Sometimes you want
to change a little functionality or what they return, so you think
you have to write a whole new function. Malcolm
goes into [http://www.pointy-stick.com/blog/2006/06/29/django-tips-extending-generic-views/]
how to extend them, to save you some time.

Use RequestContext

By default, when you render a template, you aren’t given the
request object. It’s nice to have and really simple to make django
give it to you.

from django.template import RequestContext
def index(request):
 return render_to_response('weather/index.html', {},
 context_instance=RequestContext(request))

Templates

Use the {% url %} tag.

Using the
url tag [http://docs.djangoproject.com/en/dev/ref/templates/builtins/#url]
allows you to make your templates portable and is a good way to
implement DRY. Whenever the links in your view changes, your
templates automatically update, and they always have the correct
links.

Use Template Utils

django-template-utils [http://code.google.com/p/django-template-utils/]
contain some really nice generic template tags and other goodies
that make your life easier. From getting the latest X number of
objects from a model, getting a random object from a module, or
getting the last updated one; they provide you with a really nice
generic way of extending template nodes and doing generic content
tags really easy.

Use MEDIA_URL

Django now comes with a
Context Processor [http://docs.djangoproject.com/en/dev/ref/templates/api/#django-core-context-processors-media]
that gives you
MEDIA_URL [http://docs.djangoproject.com/en/dev/ref/settings/#media-url]
in your templates. Use this so that you can apply DRY to all of
your external media Urls, like you did with the {% url %} tag for
internal things.

Use a 3-level template hierarchy

This is referenced in the
`Django docs <http://docs.djangoproject.com/en/dev/topics/templates/#id1>`_(about
a page down). But it works really well to do a base.html,
app-base.html, and then templates on top of that. This gives you a
really nice way to contain site-wide, app-wide, and view-wide
functionality inside their own little spaces.

Using template inheritance to extend itself

This is a really neat trick when dealing with multiple template
directories. It allows you to take most of a chunk of one template,
and overwrite just a small part of it.
They explain it [http://code.djangoproject.com/wiki/ExtendingTemplates]
better than I do.

Testing

Using the tests/ directory

inside of your application you can define a tests.py that will hold
tests. You can also define a tests/ directory that can hold tests.
Inside the tests directory init.py you need to import all of
your unit tests. Inside init.py you need:

from basic import *
from views import *

etc. Assuming your tests are named basic.py and views.py.

Watch Files

This tip is useful for doing TDD. You can go ahead and watch the
output of your test file and see when something changes based on
the edits you’re making to your files.

watch "python tests.py"

Nose tests

Use
nose tests [http://somethingaboutorange.com/mrl/projects/nose/].
They have some neat auto-discovery tools and lots more.
nose-django [http://www.assembla.com/wiki/show/nosedjango]
allows this to work with Django fixtures (note it may not work well
yet). This would be nice if someone wrote a test runner in django
for nose.

Mock objects

Using mock objects to test is really handy. There are a couple of
good mock testing libraries for python, and i show a simple way to
do it
here [http://ericholscher.com/blog/2008/aug/14/using-mock-objects-django-and-python-testing/]
This allows you to try your code when it’s interacting with things
that are somewhat random (like times of day, random numbers, etc.)

Use testmaker

I wrote an app that writes view tests for you. A little
self promotion [http://ericholscher.com/blog/2008/jul/26/testmaker-002-even-easier-automated-testing-django/],
but go ahead and check it out.

Want to do something a little different?

You can
define your own test runner [http://docs.djangoproject.com/en/dev/topics/testing/?from=olddocs#defining-a-test-runner]
and set it in the settings. Then you can tweak the way that django
runs your tests for you. This is a lighter weight approach than
using nose or something to run your tests, and is integrated with
django, which makes it more portable.

Use testserver

Django comes with the
testserver [http://docs.djangoproject.com/en/dev/ref/django-admin/#testserver-fixture-fixture]
command that allows you to load a fixture into the development
server and run against that. This is really useful. It also leaves
the database around after it’s done, so you can inspect it. This
can be really handy in debugging fixtures and tests.

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

A blog post a day keeps the doctor away

November blog posting month has a special moment in my Django
history. It was this time last year that I really got serious into
Django. With the help of
James Bennett’s [http://www.b-list.org/weblog/2007/nov/] and
Marty Alchin’s [http://gulopine.gamemusic.org/2007/nov/] blog
post a month streak, I got an incredibly valuable insight into
Django. It showed me a lot of the power and other great things
about Django (especially the community).

In that spirit, I figured that I would jump on the blog post a
month bandwagon (that looks like it’s going to be big in Djangoland
this year). All of my posts won’t be about Django, most of them
will probably be about programming, or technical in nature.
However, I promise nothing along these lines. Writing 31 posts back
to back is quite a lot of work. So I might blank out somewhere
halfway through for a day and resort to posting my philosophical
musing that used to be most of this blog. You are thusly warned ;)

I mentioned that some other people in the community are doing
post-a-day for the month. So expect to get your fill of awesome
Django and Tech related content.
Brian Rosner [http://oebfare.com],
Eric Florenzano [http://www.eflorenzano.com/blog/],
Justin Lilly [http://justinlilly.com/],
James Tauber [http://jtauber.com/], and
Greg Newman [http://20seven.org/] will be trying this gargantuan
task along with me!

Some of the things that you can look forward to in this month of
blog posts from my side:

	At least 2 code releases. One is a new addition and release to
testmaker, the other is another neat new testing tool.

	Pinax related material. They have their first release, and most
of us posters are in that community.

	Screencasts. These are time consuming, but I have plans for at
least a couple news ones over the month.

	A new design. The finishing touches are being put on this site
as we speak. So there will be a new version launched sometime early
this month.

	A newish approach to testing code that I have been thinking
about for a while. Hopefully it isn’t new and the Google-fu isn’t
strong with this one.

	Some talk about template tags and how to make them better

	Multiple viewpoints expressed on topics around the different
people doing this.

	Lots more!

I hope that you all stayed tuned and even join in on these posts
throughout the month. In talking about doing it, one of the big
wins of doing it at the same time was to enable the separate view
points on the same topic to be discussed. The point of blogs is to
have a discussion, and I think it will be neat to see what kind of
discourse we have throughout this month.

It looks like James Tauber has already posted his first
functional combinatorial mind bender [http://jtauber.com/blog/2008/11/01/two_functional_questions/]
over on his blog already. Let the games begin!

Now on with regularly scheduled programming.

And because I feel bad that there isn’t really any content in this
post, here is a little tip:

Doing template testing is a pain sometimes because it suppresses
your errors. You can load your templates on the command line to
test them, and it will show you the errors if they are having any.

>>> from django.template.loader import get_template
>>> get_template('mine/index.html')
<django.template.Template object at 0xa833d0>
>>> get_template('mine/error.html')
Traceback (most recent call last):
 [Chopped a bunch off]
 File "/usr/lib/python2.5/site-packages/django/template/__init__.py", line 362, in find_filter
 raise TemplateSyntaxError("Invalid filter: '%s'" % filter_name)
django.template.TemplateSyntaxError: Invalid filter: 'wtf'

This is incredibly useful, and great for debugging templates
without worrying about caching and other things like that. Also
note that this isn’t anything special used just for testing. This
is actually the way to load templates inside of your code. Check
out
the docs [http://docs.djangoproject.com/en/dev/ref/templates/api/#the-python-api]
for more. select_template is another really useful thing to
know about, so check it out!

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Announcing Django Crawler and django-test-utils

Today I’m going to be releasing a new project, called
django-test-utils [http://github.com/ericholscher/django-test-utils/tree/master].
It’s rather empty at the moment, but it does have one cool feature.
That is my
Django Crawler [http://github.com/ericholscher/django-test-utils/tree/master/test_utils/management/commands/crawlurls.py].
I have some big plans for this little guy, but for the moment it
has enough functionality to make it pretty useful.

Usage

The crawler at the moment has 4 options implemented on it. I will
outline them below and show example of the output. It is
implemented as a management command, named crawlurls. You simply
add test_utils to your INSTALLED_APPS and you are good to
go. So to run it you simply do ./manage.py crawlurls. It crawls
your site using the
Django Test Client [http://docs.djangoproject.com/en/dev/topics/testing/#module-django.test.client]
(so no network traffic is required!) This allows the crawler to
have intimate knowledge of your Django Code. This allows it to have
features that other crawlers can’t have.

Core features

The Crawler at the beginning loops through all of your URLConfs. It
then loads up all of the regular expressions from these URLConfs to
examine later. Once the crawler is done crawling your site, it will
tell you what URLConf entries are not being hit.

-v –verbosity [0,1,2]

Same as most django apps. Set it to 2 to get a lot of output. 1 is
the default, which will only output errors.

-t –time

The -t option, as the help says: Pass -t to time your requests.
This outputs the time it takes to run each request on your site.
This option also tells the crawler to output the top 10 URLs that
took the most time at the end of it’s run. Here is an example
output from running it on my site with -t -v 2:

Getting /blog/2007/oct/17/umw-blog-ring/ ({}) from (/blog/2007/oct/17/umw-blog-ring/)
Time Elapsed: 0.256254911423
Getting /blog/2007/dec/20/logo-lovers/ ({}) from (/blog/2007/dec/20/logo-lovers/)
Time Elapsed: 0.06906914711
Getting /blog/2007/dec/18/getting-real/ ({}) from (/blog/2007/dec/18/getting-real/)
Time Elapsed: 0.211296081543
Getting /blog/ ({u'page': u'5'}) from (/blog/?page=4)
Time Elapsed: 0.165636062622
NOT MATCHED: account/email/
NOT MATCHED: account/register/
NOT MATCHED: admin/doc/bookmarklets/
NOT MATCHED: admin/doc/tags/
NOT MATCHED: admin/(.*)
NOT MATCHED: admin/doc/views/
NOT MATCHED: account/signin/complete/
NOT MATCHED: account/password/
NOT MATCHED: resume/
/blog/2008/feb/9/another-neat-ad/ took 0.743204
/blog/2007/dec/20/browser-tabs/#comments took 0.637164
/blog/2008/nov/1/blog-post-day-keeps-doctor-away/ took 0.522269

-p –pdb

This option allows you to drop into pdb on an error in your site.
This lets you look around the response, context, and other things
to see what happened to cause the error. I don’t know how useful
this will be, but it seems like a neat feature to be able to have.
I stole this idea from nose tests.

-s –safe

This option alerts you when you have escaped HTML fragments in your
templates. This is useful for tracking down places where you aren’t
applying safe correctly, and other HTML related failures. This
isn’t implemented well, and might be buggy because I didn’t have
any broken pages on my site to test on :)

-r –response

This tells the crawler to store the response object for each site.
This used to be the default behavior, but doing this bloats up
memory. There isn’t anything useful implemented on top of this
feature, but with this feature you get a dictionary of request URLs
with responses as their values. You can then go through and do
whatever you want (including examine the Templates rendered and
Contexts.

Considerations

At the moment, this crawler doesn’t have a lot of end-user
functionality. However, you can go in and edit the script at the
end of the crawl to do almost anything. You are left with a
dictionary of URLs crawled, and the time it took, and response (if
you use the -r option).

Future improvements

There are a lot of future improvements that I have planned. I want
to enable the test client to login as a user, passed in from the
command line. This should be pretty simple, I just haven’t
implemented it yet.

Another thing that I want to do but isn’t implemented is fixtures.
I want to be able to output a copy of the data returned from the
crawler run. This will allow for future runs of the crawler to diff
against previous runs, creating a kind of regression test.

A third thing I want to implement is an option to only evaluate
each URLConf entry X times. Where you could say “only hit
/blog/[year]/[month]/ 10 times”. This goes on the assumption that
you are looking for errors in your views or templates, and you only
need to hit each URL a couple of times. This also shouldn’t be
hard, but isn’t implemented yet.

The big pony that I want to make is to use multiprocessing on the
crawler. The crawler doesn’t hit a network, so it is CPU-bound.
However, running with CPUs with multiple cores, multiprocessing
will speed this up. A problem with it is that some of the timing
stuff and pdb things won’t be as useful.

I would love to hear some people’s feedback and thoughts on this. I
think that this could be made into a really awesome tool. At the
moment it works well for smaller sites, but it would be nice to be
able to test only certain URLs in an app. There are lots of neat
things I have planned, but I like following the release early,
release often mantra.

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Practical Django Testing Examples: Views

This is the fourth in a series of Django testing posts. Check out
the others in my Testing series if you
want to read more. Today is the start of a sub-series, which is
practical examples. This series will be going through each of the
different kinds of tests in Django, and showing how to do them. I
will also try to point out what you want to be doing to make sure
you’re getting good code coverage and following best practices.

Instead of pick some contrived models and views, I figured I would
do something a little bit more useful. I’m going to take one of my
favorite open source Django apps, and write some tests for it!
Everyone loves getting patches, and patches that are tests are a
god send. So I figured that I might as well do a tutorial and give
back to the community at the same time.

So I’m going to be writing some tests for
Nathan Borror [http://playgroundblues.com/]‘s Basic
Blog [http://code.google.com/p/django-basic-apps/source/browse/trunk/blog/].
It also happens to be the code that powers my blog here, with some
slight modifications. So this is a win-win-win for everyone
involved, just as it should be.

Nathan’s app has some basic view testing already done on it. He was
gracious enough to allow me to publicly talk about his tests. He
claims to be a designer, and not a good coder, but I know he’s
great at both. So we’re going to talk about his view testing today,
and then go ahead and make some Model and Template Tag tests
later.

Basic philosophy

Usually when I go about testing a Django application, there are 3
major parts that I test. Models, Views, and Template Tags.
Templates are hard to test, and are generally more about aesthetics
than code, so I tend not to think about actually testing Templates.
This should cover most of the parts of your application that are
standard. Of course, if your project has utils, forms, feeds, and
other things like that, you can and should probably test those as
well!

Views

So lets go ahead and take a look to see what the tests
used to look like [http://code.google.com/p/django-basic-apps/source/browse/trunk/blog/tests.py?r=62].
He has already updated the project with my new tests, so you can
check them out, and break them at your leisure.

"""
>>> from django.test import Client
>>> from basic.blog.models import Post, Category
>>> import datetime
>>> from django.core.urlresolvers import reverse
>>> client = Client()

>>> response = client.get(reverse('blog_index'))
>>> response.status_code
200
>>> response = client.get(reverse('blog_category_list'))
>>> response.status_code
200
>>> category = Category(title='Django', slug='django')
>>> category.save()
>>> response = client.get(category.get_absolute_url())
>>> response.status_code
200

>>> post = Post(title='My post', slug='my-post', body='Lorem ipsum dolor sit amet', status=2, publish=datetime.datetime.now())
>>> post.save()
>>> post.categories.add(category)

>>> response = client.get(post.get_absolute_url())
>>> response.status_code
200
"""

Notice how he is using reverse() when referring to his URLs, this
makes tests a lot more portable, because if you change your URL
Scheme, the tests will still work. A good thing to note is that a
lot of best practices that apply to coding apply to testing too!
Then the tests go on to create a Category, save it, and then test
it’s view and get_absolute_url() method. This is a really clever
way of testing a view and a model function (get_absolute_url) at
the same time.

Next a post is created, and saved, then a category it added to it,
the one created above. That is all that these tests do, but it
covers a really good subsection of the code. It’s always good to
test if you can save your objects because a lot of bugs are found
in that operation. So for the length of the code it is remarkably
well done.

This is a pretty simple test suite at the moment. But the fact that
he has tests is better than 90% of other open source projects! I’m
sure if we asked Nathan, he would tell us that even this simple
test suite helps a ton. Most of the bugs people make break in very
loud and obvious ways. Which just goes to emphasize my point that
everything should have tests, even if they’re simplistic.

So how are we going to improve this testing of views? First of all,
note that these tests are hardly touching models, and not testing
any template tags; this will be addressed later. In regard to
views, these tests aren’t checking the context of the responses,
they are simply checking status code. This isn’t really testing the
functionality of the view, just testing if it doesn’t break. There
are also some views that aren’t being touched, like search,
pagination, and the date archive views. We aren’t going to test
pagination because we don’t have enough data to paginate. This
brings me to a meta subject, slight tangent time.

Do I test Django stuff?

So we have some Generic views in our application, should we test
them? I don’t think that there is a correct answer to this
question, but I have an opinion. I think that you should test
generic views, but only in the ways that they can break based on
how you define them. This doesn’t look much different than normal
tests that you should be writing anyway.

For the date-based generic view for example, you are passing in a
QuerySet and DateField in the URLConf; and the parts of the date
you’re using in the actual URLs. So what is the easiest way to test
that all of these things are being set correctly? Find the most
specific example and test for it. So you would test the context and
response code of blog_detail page, because it has to use the query
set, the date field, and the full path for the URLs. Assuming that
your code isn’t broken in some horrible way, that means that all
the other parts of the date URLs should work.

Let’s write some tests

So we need to add some stuff to the tests. We need to get some data
into the tests, in order to use the date-based archives, and search
stuff. So we’re going to take the stuff that was previously at the
bottom of the test, and move it up to the top. Also need to add 2
posts and categories, so that we know that our filtering
functionality is working.

>>> category = Category(title='Django', slug='django')
>>> category.save()
>>> category2 = Category(title='Rails', slug='rails')
>>> category2.save()
>>> post = Post(title='DJ Ango', slug='dj-ang', body='Yo DJ! Turn that music up!', status=2, publish=datetime.datetime(2008,5,5,16,20))
>>> post.save()
>>> post2 = Post(title='Where my grails at?', slug='where', body='I Can haz Holy plez?', status=2, publish=datetime.datetime(2008,4,2,11,11))
>>> post2.save()
>>> post.categories.add(category)
>>> post2.categories.add(category2)

Pretty obvious what this test is doing. If these tests were going
to be much more complicated than this, it would make a lot of sense
to write a fixture to store the data. However I’m trying to test
the saving functionality (which is technically a model thing), so
it’s good to make the objects inline.

So now we have our data, and we need to do something with it. Let’s
go ahead and run the test suite to make sure that we haven’t done
anything stupid. It’s a tenet of
Test Driven Development [http://en.wikipedia.org/wiki/Test-driven_development]
to test after every change, and one that I picked up from that
philosophy. It’s really handy. I don’t do it on a really granular
level like it suggests, but I try to do it after any moderately
important change.

Getting into context

So we have the tests that were there before, and they’re fine. They
perform a great function, so we should keep them around, we just
need to add some stuff to them. This is one of the reasons I really
don’t like doctests. Using unit tests you can just throw an
import pdb; pdb.set_trace() in your code and it will drop you
into a prompt, and you can easily use this to write new tests.
Doctests however hijack the STDOUT during the tests, so when I drop
into pdb with a >>> import pdb; pdb.set_trace() in the test, i
can’t see the output, so it’s hard for me to get testing
information.

Note: You can also do this by changing your settings file
database (because otherwise these objects would be created in your
real DB), running syncdb, running s/>>> // on your test, adding
a setup_test_environment() import and call to the test, and
running python -i testfile, if you want. But do you really want
to do that?

Let’s go poking around inside of response.context, which is a
dictionary of contexts for the response. We only care about [-1],
because that is where our context will be (except for generic
views, annoying right?). So go down to the first view,
blog_index, and put

>>> response = client.get(reverse('blog_index'))
>>> response.context[-1]['object_list']
[test]

In your tests. We know [test] won’t match, but we just want to know
what the real output is. When you go ahead and run the tests your
should find some output like this:

Expected:
 [test]
Got:
 [<Post: DJ Ango>, <Post: Where my grails at?>]

So go ahead and put in the correct information in where [test] was.
This is a really annoying way of testing, and I’m going to repeat
that this is why doc tests are evil, but we’re already this far, so
let’s push on. Writing tests this way requires the tester to be
vigilant, because you’re trusting that the code is outputting the
correct value. This is kind of nice actually, because it forces you
to mentally make sure that your tests are correct, and if you’re
code isn’t outputting what you expect, then you’ve already found
bugs, just by writing the tests ;) But if you’re testing code
that’s complex, this method breaks down, because you don’t know if
the output is correct!

If you look in the context, you’ll see lots of other things that we
could test for as well. Some that Django (oh so nicely) gave us,
and other stuff that is user defined. Things like pagination,
results per page, and some other stuff that we really don’t care
about. The object_list on the page is really what we’re after, so
we can move on. Run your tests to be sure, and lets move on.

Updating current tests

Now that we have our hackjob way of getting data out of the tests,
we can move on to writing more tests. Go down to the next view test
of blog_category_list, and pull the old object_list trick. You
should get the following back out once you run your tests:

Expected:
 [test]
 Got:
 [<Category: Django>, <Category: Rails>]

This looks correct, so lets go ahead and put that in the test. As
you can see, for this simple stuff, it isn’t really a huge deal
doing testing this way. The test suite runs in about 3 seconds on
my machine, so it’s not a huge hurdle.

Let’s go ahead and do it for the category and post detail pages.
When I don’t remember or don’t know what variables we’ll be looking
for in the context, I usually just put >>> request.context[-1]
to output all of it, and see what it is that I want. For the
category.get_absolute_url() we need object_list again. For
the post.get_absolute_url() we just want object.

>>> response = client.get(category.get_absolute_url())
>>> response.context[-1]['object_list']
[<Post: DJ Ango>]
>>> response.status_code
200

>>> response = client.get(post.get_absolute_url())
>>> response.context[-1]['object']
<Post: DJ Ango>
>>> response.status_code

We can consider those views tested now.

Creating new tests

So now we’ve improved on the tests that were already there. Let’s
go ahead and write some new ones for search and the date-based
views. Starting with search, because it will be interesting. Search
requires some GET requests with the test client, which should be
fun.

>>> response = client.get(reverse('blog_search'), {'q': 'DJ'})
>>> response.context[-1]['object_list']
[<Post: DJ Ango>]
>>> response.status_code
200
>>> response = client.get(reverse('blog_search'), {'q': 'Holy'})
>>> response.context[-1]['object_list']
[<Post: Where my grails at?>]
>>> response.status_code
200
>>> response = client.get(reverse('blog_search'), {'q': ''})
>>> response.context[-1]['message']
'Search term was too vague. Please try again.'

As you can see, we’re testing to make sure that search works. We’re
also testing the edge case of a blank search, and making sure this
does what we want. A blank search could return everything, nothing,
or an error. The correct output is an error, so we go ahead and
check for that. Notice that you pass GET parameters in the test
client as a dictionary after the URL, and passing them as
?q=test on the URL wouldn’t work.
Russ [http://cecinestpasun.com/] is working on fixing that, and
by the time you read this, it might not be true.

Next, on to testing the generic date views. You should be in the
hang of it by now.

>>> response = client.get(reverse('blog_detail', args=[2008, 'apr', 2, 'where']))
>>> response.context[-1]['object']
<Post: Where my grails at?>
>>> response.status_code
200

Notice here that we’re using the args on reverse, and not using get
parameters. We’re passing those arguments as positional into the
view. You can also use kwargs={‘year’: ‘2008’} if you want to be
more explicit. As talked about above, I feel that this is enough of
testing for the generic views.

Wow! That was a long post. I’m glad I decided to split the testing
up into separate posts! I hope this has been enlightening for
everyone, and I’m sure that I’m doing it wrong in some places. I
would love some feedback, and to hear how you work around and solve
some of the problems above. Also your thoughts on this kind of
stuff.

Nathan has graciously included
my new tests [http://code.google.com/p/django-basic-apps/source/browse/trunk/blog/tests.py]
in his project, if you want to see them live, or check them out.

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

The importance of not deleting blog posts (read: ideas)

A lot of the time I start a blog post as a sentence. It is
something that strikes me and I don’t really know what I think
about it. It is a moment of thought that needs to be revisited, but
cannot yet be expounded upon.

A while ago I went through all of my un-published blog posts in an
effort to delete them. I read the titles and thought that there was
very little that I had to think or say about the topics. (The
beauty of django not letting you delete things en masse is that I
had to go into the post to delete it). Once I went into the post to
try and delete it, I found it nearly impossible. I realized that I
had been using my unfinished blog posts as a kind of note pad of
ideas, or a place where I just brain dumped when I felt the need.

The other crazy thing is that some of these posts had the ideas
more thought out that I previously thought. I had written a lot in
that space, and promptly forgotten about it. There is nothing quite
like remembering writing something that you forgot you knew.

The next question was what to do with all of these half finished
ideas, thoughts, and half-quack brained theories. What better than
to publish them? The value of an idea is very little. It gains a
lot of value when you are forced to write it out. It gains even
more insight when you appreciate that it will be read by others.
There is a progression that these texts go through that allows them
to be better than they were before.

The simple act of writing an ideas clarifies it. The simple act of
publishing an idea betters it. The feedback that is gained from the
public exposure is more or less external to the idea. The idea will
get better once there is feedback, but getting to the point where
there is feedback is the key. Once you have an idea ‘polished’
enough for public consumption, it has gone almost beyond being an
idea. You have hopefully thought it out to a logical conclusion,
because you are going through, and putting yourself in the heads of
others.

This isn’t how all posts work, or even most. But if you look at
things this way, it is a real driver to putting things out there
and not keeping them in. A little extrinsic motivation if you will.
The fact that your idea is getting spread to others to do with what
they please, means that you want your idea to be in the correct
form for that to happen, and that you want it to take those people
to the right place.

The other awesome gain from posting things is indeed the feedback
you get. A lot of people release software and it gets used in ways
that nobody ever intended it to be used. Having as many eye balls
looking at something is the best way to achieve something awesome.

All of the above applies to code as well. Also, don’t take this
post as an example of the above, it could be written better, but i
wanted to get the idea out there. It’s better than it was yesterday
;)

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Encouraging Testing in Django

I was having a conversation with
Jacob [http://www.jacobian.org/] tonight about testing in
Django. He has shot down
testmaker [http://code.google.com/p/django-testmaker/] for being
too specific for Django core, which I almost agree with, given my
grandiose plans for it before the month is out. I’m quite okay with
it staying a third party app for a little while longer.

However, that got us on the topic of testing, and I think it’s
interesting enough to post here to get some feedback and to tell
people what’s up. First we talked about trying to stub out some
tests for people in the startapp command in Django. Like Rails
does, except there is a really hard question about what to provide
in that file. Should we provide a simple test that passes and makes
people feel good about testing? Do we be evil and provide a test
that fails, with assert False, 'Write some tests yo!'?

So the idea then progressed into perhaps having a command that can
be called later in the process to stub out your tests files with
real data. Perhaps stubbing a test for each view in your URLconf
and each method in your Models or something like that.

We also talked about the possibility of adding a fifth part to the
Django Intro Tutorial about testing. I think that this is a really
great idea, and would help further the testing culture inside of
the Django community. I volunteered to write the first draft of
that document, so expect that to be posted to this blog sometime
next week.

So I’m just kind of curious what people think is a good way to get
testing integrated into the Django community better. I am trying to
write some tools that will help people write tests, which would
help them have tests :). But I think that there is a lot more that
can be done to get people thinking about testing their
applications.

Should we be encouraging people to be testing from when they start
a new application in Django? If so, what should we put in the
tests.py file when they create an application? Should we just stub
out an empty tests.py file to remind them that they should be
writing tests? Should we be pushing best practices from the
beginning in that form, or giving people a builtin option to
perhaps then stub it out later?

I think that the Django community is lacking in the testing realm
these days, and I’m curious what we can be doing to get more people
excited about testing. It’s a great tool, and something that
everyone should be doing. So I’d love to hear feedback or ideas
about what people think can and should be done with regards to
testing.

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Should reusable apps have templates?

There is a debate among the Django community about whether people
should include templates in their reusable apps.

The arguments for including them are generally that it is nice to
simply install the app and have things just work. This is a really
nice feature to not have to dig through the code looking for
template names and context variables. Then creating your own
templates for code you didn’t write. I am usually of this
persuasion, because it’s really annoying to have a big up front
cost to begin using an app.

I think that an app that comes with no templates is going to be
used less. Some people might think that it a good thing, but I
think it is better for an app to be used as much as possible. I
know that I personally have tried to check out an app, and given up
because there are no templates. It is a pretty sizable mental
hurdle (and a decent bit of work) to get some template to even test
the functionality. Sure, you can look at the code, but that isn’t
nearly as quick and easy as simply plugging the app in a testbed
and seeing what happens.

The argument against it are that there is no possible way to know
how your users are going to use your templates. They will file bugs
against the default templates because they don’t work the way they
want them to. I understand this point of view as well. There is no
possible way to ship a set of default templates that will work for
everyone, every time. So then the question is, what do you do?

I think that there is a nice middle ground that we can achieve.
Reusable apps should ship with templates, but they shouldn’t be in
a place where they are run by default. I say that they should ship
in the docs/ folder. This way they are seen as a reference
implementation. A user doesn’t automatically get them to run, and
if they move them out of the docs folder, then they know it is a
reference implementation instead of something that is meant to work
for them every time.

I think that this solved the problem by letting people evaluate
apps with templates that show it’s basic functionality. But it puts
a slight barrier between seeing them as templates that should work
for me. They should be seen as a reference, and as so they can go
in the docs/ directory. Of course, if you want to ship your
templates in the templates/ dir inside the app, that is cool. But I
think that apps that have views, should have templates to go along
side them, even if they’re not ‘installed’ by default.

Yes, this is a half assed post. I was going to write a longer one,
but there is a free
Robert Randolph [http://www.robertrandolph.net/] show in
Lawrence tonight. This is scheduled to post at 11pm, so if I don’t
have time to post, you will get this awesome half assed one ;)

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Debugging Django in Production Environments

Nick [http://nicksergeant.com/blog/django/automatically-setting-debug-your-django-app-based-server-hostname]
had a nice post about setting DEBUG based on the hostname of the
server that you’re site is running on. This allows you to set DEBUG
to True for your staging site, and False for your production site.

I do something along those lines, but a little bit differently. I
can’t take credit for this idea, because it came from
this snippet [http://www.djangosnippets.org/snippets/935/]. It
is a really neat trick, that I have expanded on a little bit.

from django.views.debug import technical_500_response
import sys
from django.conf import settings

class UserBasedExceptionMiddleware(object):
 def process_exception(self, request, exception):
 if request.user.is_superuser or request.META.get('REMOTE_ADDR') in settings.INTERNAL_IPS:
 return technical_500_response(request, *sys.exc_info())

Now simply save this in a file somewhere. Add it to your
MIDDLEWARE_CLASSES, and you are good to go. For example, mine
looks like:

'tools.middleware.superuser.UserBasedExceptionMiddleware',

This is a pretty simple middleware that is crazy useful. When you
throw this inside of your site, it will give you a normal Django
error page if you’re a superuser, or if your IP is in
INTERNAL_IPS.

This makes it really nice, because you can get an error message on
your production servers, where your normal users get your normal
pretty 500 pages. This makes debugging things that are showing up
in production, but won’t be reproduced on the staging server
possible. Caching behavior is a big one that I know isn’t tested
when you are using DEBUG = True. This lets you keep DEBUG = False
on, but gives you some nice error pages.

Hope this tip is useful.

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

A start to the uber community

Well I spent all day Saturday, and all night. Into Sunday morning
hacking on some code. Probably the most productive 24 hours of my
life. I have a couple of announcements, but in the spirit of
post-a-day, I’ll spread them out over a couple days :).

The big one, is that I basically wrote an entire Django application
last night. You can check it out
over here [http://ericholscher.com/django/]. It is basically an
aggregator for the Django Community Feed. I seeded the data with
the people who were on Django’s Community Feed, and then I grabbed
as much of their social networking information as possible.

All of this code will be shown at some point over the next couple
of days. However, I don’t have the energy to write it up quite yet.
However, please play around with the data, there’s some really neat
possibility in there for something cool...

At the moment there is..

	A river of data for every user, all of their services

	A river of data for every user, for each service

	A river of data for each service for all users combined

	A river of data for all services for all users combined

	Atom feeds for all of the above (it says RSS but I lied)

	A permalink to every item a user has

	A profile page, listing each users username at each network that
I could find.

Feeds should be updating hourly, but I haven’t tested them. This
model is currently pulling data, and will always have to for some
data. However, I plan to be open for pushing as much of this data
as possible. Most people have tumblelogs on their sites, so it
would be pretty easy for them to push all their data in, with more
metadata than I can apply from outside.

I’d love to hear some comments, feedback, and ideas for future
directions. With a solid OpenID server and distributed identity, I
think that we could really make something special.

Note: I also added the ability to combine (only) 2 tags in the
user and everyone views. See
http://ericholscher.com/django/river/friendfeed+twitter/ and
http://ericholscher.com/django/profile/Eric%20Holscher/friendfeed+twitter/

PPS: If your info isn’t showing up in your page. Add some
rel=”me” links to your profiles on your blog’s homepage. Person
profiles get updated daily.

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Busy Busy

So at work since I started for
Mediaphormedia [http://www.mediaphormedia.com/], currently World
Online, and the birthplace of Django, I have been tasked with
porting Ellington [http://ellingtoncms.com]. Ellington is the
CMS that we create and sell, and is what Django originally was.
Django was pulled out of Ellington and Open Sourced.

So when I got here, my first job was tasked with porting Ellington.
We have a version running on
Revision 1290 [http://code.djangoproject.com/changeset/1290] and
.91. Aka, really damn old, pre-magic removal old. We were tasked
with porting this to Django 1.0 (which is around revision 9300).
That is a whole 8000 source code revisions, and 600% more revisions
than the base. That is a whole lot of code.

So today at work, we are launching our 3 main sites;
Ljworld [http://ljworld.com],
KU Sports [http://kusports.com], and
Lawrence.com [http://lawrence.com]. These will be running all on
Django 1.0, which is a monumental task.

That is the reason today’s post is short. Was bug fixing all day,
and I have to be up at 5am to go in and put out the fires that will
surely happen once users start hitting the site.

I will have an updated post afterward about the experience.

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Introduction to Python/Django testing: Basic Doctests

This is the first in a series of blog posts and screencasts that
will walk you through how to test your Django application. These
posts will focus more on how to get things done in Django, but note
that a lot of the content is applicable to pure python as well. A
lot of best practices are codified into Django’s testing framework,
so that we don’t have to worry about them! I will try to point them
out as we are using them through, because they are good things to
know.

The currently planned structure for this series is below. Please
comment if there is something that you think is missing, or
something that I shouldn’t do. This is subject to change, a lot, as
well, so your feedback will help direct it. Also note that most or
all of this content is available in the Django and Python
documentation, and I will try and point there and not re-invent the
wheel. I hope that these posts will take a more practical look, and
try to point out some pit falls and other things that are useful.

Outline

	Basic Doc tests

	Basic Unit tests

	Real examples of both types

	Comparison of Unit tests vs. Doc test

	Fixtures

	Using Mock objects

	Third party testing tools

	Writing your own test runner

	Getting code coverage for your tests

Where to start

I’m assuming that you already have a project that you’re working on
that you would like to test. There are two different ways of
putting tests inside of your django project. You can add a tests.py
file and put your tests inside of there. You can also define a
tests/ directory and put your tests in files inside of that. For
these tutorials it is assumed that the second is the way things are
done. It makes it a lot easier when you can break your tests out
into logical files.

Doctests

These can go in two places inside your django project. You can put
them in your models.py file, in the Docstring for your modules.
This is a good way to show usage of your models, and to provide
basic testing. The
official docs [http://docs.djangoproject.com/en/dev/topics/testing/#writing-doctests]
have some great examples of this.

The other place your Doctests can go is inside your tests
directory. A doctests file is usually pretty simple. A doctest is
just a large string, so there isn’t much else to put besides a
string. Usually you want to use the triple quote, multi-line string
delimiter to define them. That way your ” and ‘s inside of your
doctests don’t break.

"""
This is my worthless test.
>>> print "wee"
wee
>>> print False
False
"""

You can go ahead and put that in a file in your tests/
directory, I named it doctst.py. I didn’t name it doctest,
because of the python module with the same name. It’s generally
good to avoid possible name overlaps. My application that I’m
writing tests for is mine, because it’s the code for my
website. Make sure that directory has an __init__.py as well,
to signify that it is a python module.

Now here is the tricky part; go ahead and try and run your test
suite. In your project directory run ./manage.py test APPNAME.
It will show you that you have passed 0 tests. 0 tests? We just
defined one.

You need to go into your __init__.py file and put some stuff in
there.

import doctst
__test__ = {
 'Doctest': doctst
}

You are importing the doc test module and then adding it to the
__test__ dictionary. You have to do this because of the way
that python handles looking for doc tests. It looks for a
__test__ dictionary inside of your module, and if that exists
it looks through it, executing all docstrings as doctests. For more
information look at the
Python docs [http://www.python.org/doc/2.5.2/lib/doctest-which-docstrings.html].

Now you should be able to go ahead and run the tests and see the
magical Ran 1 test in 0.003s OK that all testers live for.
This is little bit of overhead really threw me off when I was
trying to break my tests.py out into the tests/ directory. Notice
that the doc test runner sees all of your tests as one single test.
This is one annoying thing that the doctests do.

So now we have a test suite that is worthless, but you know how to
use doc tests. If you didn’t notice, the doctest format is simply
the output of your default python shell, so when you are testing
your code on the command line and it works, you can simple copy and
paste it into your tests. This makes writing doc tests almost
trivial. Note however, that they are somewhat fragile, and
shouldn’t be used for everything. In the next segment, we will talk
about unit tests. Then we will compare the two and see what the use
cases are for each.

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Python gems of my own

Note: I’m launching a redesign today to address the styling
issues. Please bear with me

A great example of how this month of blog posting is spawning great
content on the interwebs.
Other Eric [http://eflorenzano.com/blog/post/gems-python/]
posted a gems of python post, in which he pointed out some of the
neat functions that he uses. The python stdlib has a ridiculous
amount of really really useful things inside of it, and it’s hard
to know what even exists there. I love posts like that, that point
to some neat little utility functions and tricks that make things
really nice. In that spirit, here is my own list of Python Gems

1. urlparse

urlparse [http://docs.python.org/library/urlparse.html] is a
really handy piece of functionality if you are trying to deal with
URLs on the web. As per usual, an example shows it best.

>>> from urlparse import urlparse
>>> urlparse('http://www.ericholscher.com/example/dir/')
('http', 'www.ericholscher.com', '/example/dir/', '', '', '')
>>> urlparse('http://www.ericholscher.com/example/dir?query=r0x0r#awesome-part')
('http', 'www.ericholscher.com', '/example/dir', '', 'query=r0x0r', 'awesome-part')
>>> parsed = urlparse('http://www.ericholscher.com/example/dir?query=r0x0r#awesome-part')
>>> parsed.path
'/example/dir'
>>> parsed.scheme
'http'

I was looking for a good way to check for relative versus absolute
urls, and this made it really easy. Also incredibly easy to check
for the type of link (http, https, mailto, ftp). You can access the
data via the named patterns or as a list.

2. inspect

The entire inspect [http://docs.python.org/library/inspect.html]
module is incredibly useful. I was looking through the Django
source, which is where I stumbled upon it. It is used inside the
simple tag [http://code.djangoproject.com/browser/django/trunk/django/template/__init__.py#L879]
code for Django templates. getargspec is really handy, but
there is a lot of really interesting stuff in that file. I don’t
have anything that I can show quite yet, but I’m going to use the
inspect stuff in an upcoming snippet. Here is a simple use case.

>>> import inspect
>>> def test(a, b=True, *args, **kwargs):
... pass
...
>>> inspect.getargspec(test)
(['a', 'b'], 'args', 'kwargs', (True,))
>>> import django
>>> inspect.getmodule(test)
<module '__main__' (built-in)>
>>> inspect.getfile(django)
'/Users/ericholscher/Sites/EH/django/__init__.pyc'
>>> inspect.getsourcefile(django)
'/Users/ericholscher/Sites/EH/django/__init__.py'
>>> inspect.ismodule(django)
True
>>> inspect.isbuiltin(django)
False

As you can see, there is lots of really nice stuff in there.

3. Generator expressions

These are very similar to list comprehensions, except they are
evaluated lazily. They are described “as a high performance, memory
efficient generalization of list comprehensions and generators”.
The only difference in syntax is that you use a () instead of a []
around the comprehension.

>>> iter = (x for x in range(1,5))
>>> reg = [x for x in range(1,10)]
>>> iter
<generator object at 0x29e3c8>
>>> reg
[1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> iter.next()
1
>>> iter.next()
2
>>> for x in iter:
... print x
...
3
4

The main use case that I have seen for this is if your list
comprehension is going to take a lot of memory. If you aren’t sure
you’re going to need all of it, or don’t want to store it all in
memory, then you can use the iterator. It will then get generated
on demand when you need it. If you want to create your own
generator, you simply use the yield keyword instead of return.
Python makes this really easy!

4. 128

Note: Some commenters pointed out that this is also re.DEBUG.
James Tauber [http://jtauber.com/blog/2008/11/03/pythons_re_debug_flag/]
has a nice post explaining it more in depth.

I don’t know if this is documented in the Official python
documentation, but it is an incredibly useful regex debugging tool.
You can pass in 128 to your re.compile() function and get the parse
tree back out! Really neat, check it out:

>>> import re
>>> re.compile('(\w+): (<.*?>)', 128)
subpattern 1
 max_repeat 1 65535
 in
 category category_word
literal 58
literal 32
subpattern 2
 literal 60
 min_repeat 0 65535
 any None
 literal 62
<_sre.SRE_Pattern object at 0x29f278>
>>> re.compile('Ahoy Globe', 128)
literal 65
literal 104
literal 111
literal 121
literal 32
literal 71
literal 108
literal 111
literal 98
literal 101
<_sre.SRE_Pattern object at 0x267920>

Isn’t that neat?

5. enumerate

enumerate [http://docs.python.org/library/functions.html#enumerate]
is very similar to the zip function that Eric talked about in his
post. It is useful in those cases where you want to know the index
of something in a list, but don’t want to do i += 1.

>>> buddy_list = ['frank', 'liza', 'bob']
>>> for love, person in enumerate(buddy_list):
... if love > 1:
... print "%s is not loved" % person
... else:
... print "I love %s" % person
...
I love frank
I love liza
bob is not loved
>>> for place, person in enumerate(buddy_list):
... print place, person
...
0 frank
1 liza
2 bob

That’s it for today. As Eric said (not talking in the third
person), there are lots of little awesome hidden corners of Python.
I’d love to hear about the things that you find really useful.

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Gentlemans agreement on Django templates

There are a lot of reusable apps out in the Django Ecosystem. I
wrote a
previous post [http://ericholscher.com/blog/2008/nov/14/should-reusable-apps-have-templates/]
about why I think that reusable apps should come with templates.
There is a problem about distributing templates that I want to
address with this post: the problem of Django Template Block
names.

There are already some unwritten conventions in the community in
regards to block names, and I think that talking about it will
help. I don’t think that we’re going to be able to come up with a
way that everyone will follow, but I think it would be nice if we
could create a way to easily redistribute templates.

The main reason that I have been thinking about this is because of
Pinax [http://pinaxproject.com], they use some different
template block name than my apps. So in order to use PInax and my
app, I needed to change all of the blocks of my templates! That is
a lot of work that could have been avoided by some
standardization.

There are a lot of different ways to think about the content of a
page, but I’m going to propose some basic template blocks that most
pages will have, and then talk about some more ‘extended’ blocks
that might be useful.

Blocks we need.

{% block title %}

This will be the block where you define the title of the page.
Presumably your base.html will define your Site’s name (perhaps
even using the Sites framework) outside of this tag, to be places
on all pages.

{% block extra_head %}

I think that this is a good one that most people are already using
in some form or another. In your base template you have a set of
things in your <head> that every page will have. However, a lot
of other pages need things that they also want to put in the head
of a document, like RSS feeds, Javascript, CSS, and all the other
things that should go in the head. You can and probably will have
other specialized blocks (like title above) that will fill in other
parts of the head too.

{% block body %}

This tag will be placed around the entire body section of the page.
This allows you to create pages in your app that replace the entire
page, not just the content. This won’t be used a lot, but it’s a
really handy tag to have when you need it. If you haven’t noticed,
I’ve been trying to keep tag names consistent with their html tag
names whenever possible.

{% block menu %}

This would be where your menu goes. It would be the site-wide
navigation, and not a per-page type of navigation.

{% block content %}

This will be the place where you define the content on a page. This
will presumably change on every page. It will not include any site
navigation, headers, footers, or anything else that would belong in
a base template.

Other possible blocks

{% block content_title %}

This would be where the “title” of a content block would be. It
includes the title of a blog. It can also include some kind of
navigation between content, or other things like that. Presumably
something that isn’t the main pages content. I don’t know if this
should go inside the content tag and have a main_content as
opposed to the content tag proposed above.

{% block header %} {% block footer %}

Any text area in the header of footer that might change on a
page-by-page basis.

{% block body_id %} {% block body_class %}

This would be used to set the class or id of the body tag in the
document. This is useful to set for styling and other properties.

{% block [section]_menu %} {% block page_menu %}

This would be opposed to the menu block proposed above. It
would be for the section or page.

Edit: Updated back to include _’s. Because I think thats more
pythonic and looks better. The Django Admin isn’t meant to be a
reference implementation of the templates.

A lot of these ideas have been taken from
Nathan [http://playgroundblues.com] and his
base.html [http://code.google.com/p/django-basic-apps/source/browse/trunk/blog/templates/base.html]
for basic-blog. I’m sure that he and
Christian [http://mintchaos.com/] have put way more thought into
this than I have. I’m just curious what people think, and if
there’s something crazy that I have missed..

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Luck and a New Life in Lawrence

Note: This isn’t a technical post. If you don’t want to be getting
posts like this, you can sign up for just my
Django feed [http://feeds.feedburner.com/EricPlanetDjango]. This
is my personal blog, so stuff like this pops up from time to time
:).

Most people believe in luck. If you believe in luck, presumably the
chance of luck happening is 50/50 on the side of good or bad luck.
Each theoretically has an equal chance of happening, if luck is an
abstract quantity.

However, a big part of luck is being in the correct position to
embrace it. There are a lot of lucky breaks that people have
encountered that they have said ‘no’ to. Even more where they could
have had an incredibly lucky thing happen but it just wasn’t right.
There are a lot of people who say that they have bad luck, but
perhaps they aren’t setting themselves up to be able to be lucky.

To take a personal example, I feel incredibly lucky to be where I
am at the moment. There is not a lot of luck involved in it really;
I did a lot to get where I am. First off, I had to do a lot of work
by myself in college. Nobody taught classes in Django or anything
like that. I was incredibly lucky (in the real sense) to have an
adviser and professor who was amazing. He taught a Perl/Python
class, an Ajax class, and lots of other great classes that have
contributed to my knowledge. But if I hadn’t taken those classes
and seized the opportunity to learn about web development, I
wouldn’t be here.

The next big step was moving to Kansas! From Virginia, by the
ocean, having lots of friends, working in the same town I went to
college in, for a Python shop. That was the offer that I received
after college...Or move to Kansas and work for a Newspaper of all
things! Doing tech at a newspaper, how horrible...But this was no
ordinary newspaper, and this wasn’t Kansas. It was Lawrence, a long
time stronghold for liberals since the Civil war. It was the
newspaper that invented Django, and was one of the first to
integrate the newsroom. A great place to work and a great place to
live.

Plus I had to be in a place in my life where I could up and move.
Had I had a girlfriend or some other commitment then I probably
would have stayed. There are a million things that could have kept
me from achieving what I know I should. From fear of the unknown,
being a thousand miles away from any family and a beach, to many
other things. But I knew it was the right thing to do, for my
career, and for my personal growth. That was it, and it was
decided, but it certainly wasn’t easy, and a miraculously lucky
event didn’t just fall into my lap. It was brooded over many a
night and weighed against the easy and obvious. Who knows what kind
of Luck I would have had, had I chosen the other path?

Speaking of moving to Lawrence, it’s amazing how a change in life
(moving, new job, new friends, new everything) sends one’s mind
thinking into the depths of existence. Ever since ending up in
Lawrence without any old friends and lots of time to think, I’ve
been re-evaluating a lot of things in my life, and my mind has been
working overtime.

Upon dramatic change in life simple assumptions no longer hold
true. I get to choose my entire life all over again. Do I want to
keep the same personality, same type of friends, same type of
lifestyle; or do all of these get changes (for the better, or for
the worse). Who knows, but it will be a hell of a ride trying to
figure it all out. And I’m going to enjoy every second of it,
because that’s all I can do.

I have a great new group of coworkers that I have been spending a
good amount of time with. Good people, and they have a lot of
similar interests. My co-workers have an amazing depth and breadth
of geek knowledge, while managing to maintain a social ability that
is above par for a lot of geeks. It is quite impressive and says a
lot about the town and people of Lawrence that they are able to
keep such quality programmers employed, inventive, happy, and
productive.

I think that progressive places have always been the breeding
ground of great ideas. The company that you keep says a lot about
you, and a town with such progressive and forward-thinking ideas
and ideals about the way things should be; allows us to simmer in
the creativity that abounds in many forms.

I was having a conversation with a new-found friend the other day.
He was talking about the brilliance of the people in Lawrence,
about how you can’t think less of people. A simple example was that
when we were eating he mentioned the server of our food was an
amazing guitarist. In fact, we talked to him about it and
apparently he was playing that night at a venue downtown.

In most situations and other places that I have lived, I tend to
assume the worse of people. “People tend to suck” is one of my
phrases that I say. Lawrence really gives me an appreciation of the
ability of my common man, and the fact that they are impassioned
and striving for something (anything) is highly inspirational.
Surrounding yourself with people that are passionate about anything
is a great way to develop passion within yourself.

Is it lucky that I’ve ended up in such a cool place. Or is it
because it is such a cool place that I moved halfway across the
country to live and work here? These are the kinds of things that I
have been pondering as of late...

Now back to your regularly scheduled geekery.

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Django Aggregator v2 now has tagging, and you should too.

I have been doing some more work on my Django Community Aggregator
/ Django People v2 project. A big feature that I want to
incorporate is tagging. I want people to be able to sort data by
tag, among other things. I think that this is a pretty killer
feature.

This allows someone to say “I want to get all of the data about
testing [http://ericholscher.com/django/tag/testing/] or
debugging [http://ericholscher.com/django/tag/debugging/] that
the Django community is doing”. However, if nobody is tagging their
posts, then only services that provide tags will be available in
those views. A lot of people are using
django-tagging [http://django-tagging.googlecode.com/] on the
backend of their blogs, but they just aren’t exposing that data in
feeds.

Note: Yes I know the data can’t be edited yet (on the aggregator).
That is because it is a project that is just living on my site for
the moment. Once it gets moved off and the Uber community of Django
gets more off the ground, all of those issues will be solved.

Luckily, it is really easy to expose your tagging data in your
Django feeds. This assumes you are using Django Tagging, however,
it’s really easy with anything else.

Say we have our feed class that looks like this.

class BlogPostsFeed(Feed):
 title = 'My awesome blog'
 description = 'My awesome blog"

 def link(self):
 return "http://mysite.com"

 def items(self):
 return Post.objects.published()[:10]

 def item_pubdate(self, obj):
 return obj.publish

That is a pretty basic feed, but much akin to what most people
have. Now lets add some tagging in there! Assuming that you have
the Tag model imported from tagging, you can simply do this:

def item_categories(self, obj):
 return [tag.name for tag in Tag.objects.get_for_object(obj)]

You can test to make sure that your feeds are working by using
feedparser [http://www.feedparser.org/]

In [1]: import feedparser

In [3]: p = feedparser.parse('http://ericholscher.com/feeds/posts/')

In [4]: p.entries[0].tags
Out[4]:
[{'label': None, 'scheme': None, 'term': u'lawrence'},
 {'label': None, 'scheme': None, 'term': u'mediaphormedia'},
 {'label': None, 'scheme': None, 'term': u'philosophy'},
 {'label': None, 'scheme': None, 'term': u'post-a-day'},
 {'label': None, 'scheme': None, 'term': u'ramblings'}]

That’s it! Now everyone go do that to their feeds, so that I can
harvest your tags and make them useful :)

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Testmaker 0.2: Rewritten and improved

About a week ago, I went ahead and re-wrote
testmaker [http://code.google.com/p/django-testmaker/] and moved
it into my
django-test-utils [http://github.com/ericholscher/django-test-utils/tree/master]
project on github. The syntax is now a bit different, and the whole
thing is much improved. This is version 0.2. The `screencast <>`_
from the last release still shows the gist of the project, except
for the changed syntax.

Also note that my projects have permanent pages for documentation
over at my projects page [http://ericholscher.com/projects/].
This will stay up to date with the most current version of the
software, and basically be a copy of this post for now.

Testmaker

What is does

Django testmaker is an application that writes tests for your
Django views for you. You simply run a special development server,
and it records tests for your application into your project for
you. Tests will be in a Unit Test format, and it will create a
separate test for each view that you hit.

Usage

Step 1: Add test_utils to your INSTALLED_APPS settings.

Step 2:

./manage.py testmaker APP

This will start the development server with testmaker loaded in.
APP must be in installed apps, and it will use Django’s mechanism
for finding it. It should look a little something like this:

eric@Odin:~/EH$./manage.py testmaker mine
Handling app 'mine'
Logging tests to /home/eric/Python/EH/mine/tests/mine_testmaker.py
Appending to current log file
Inserting TestMaker logging server...
Validating models...
0 errors found

Django version 1.0.1 final, using settings 'EH.settings'
Development server is running at http://127.0.0.1:8000/
Quit the server with CONTROL-C.

Then, as you browse around your site it will create unit test files
for you, outputting the context variables and status code for each
view that you visit. The test file used is in
APP/tests/APP_testmaker.py. Once you have your tests written,
you simply have to add them into your __init__.py, and then run
your tests.

Step 3:

./manage.py test APP

Things to notice

This fixes a lot of complaints that people had about previous
versions of test maker. This allows you to test apps that are
anywhere on your Python Path (and in your INSTALLED_APPS), which
makes life a lot easier. Each view also has it’s own test name,
which is a slugified version of the request path and the time when
you hit it (because I needed something unique :)) You also may
notice that there is rudimentary support for template tags; this
will be explained upon in my
next post [http://ericholscher.com/blog/2008/nov/27/value-conventions/].
However, for now know that it only works for template tags that
don’t set a context variable, or use the format
as <context_var> to set one.

Improvements over 0.1

	Each page request is in its own test, for easier debugging

	It will append tests if your APP_testmaker.py file already
exists.

	You can now test admin views

	POST support is improved

	The code is cleaner and more readable

	Git!

Options

-f –fixture

If you pass the -f option to testmaker, it will create fixtures
for you. They will be saved in
APP/fixtures/APP_fixtures.FORMAT. The default format is XML
because I was having problems with JSON.

–format

Pass this in with a valid serialization format for Django. Options
are currently json, yaml, or xml.

–addrport

This allows you to pass in the normal address and post options for
runserver.

Future improvements

Force app filtering

I plan on having an option that allows you to restrict the views to
the app that you passed in on the command line. This would inspect
the URLConf for the app, and only output tests matching those URLs.
This would allow you to fine tune your tests so that it is
guaranteed to only test views in the app.

Better test naming scheme

The current way of naming tests is a bit hackish, and could be
improved. It works for now, and keeps names unique, so it’s
achieving that goal. Suggestions welcome for a better way to name
things.

Improve template tag testmaker

It is a total hack at current, but it works. Certainly a first,
rough draft.

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

The value of conventions, aka testmaker for template tags.

A couple
posts ago [http://ericholscher.com/blog/2008/nov/20/gentlemans-agreement-django-templates/],
I talked about how we should have conventions for the names that we
use in Django Template Blocks. Today I will be talking about the
value that is gained from this kind of structure.

Use Cases

Template Tags

My use case for Template tags is what started me thinking about
this. Some of you may know that I have created a testmaker
application for Django. This allows you to automatically test your
view code, based on a browser session. Once I got most of the kinks
worked out in this code, I started thinking about what the next
best thing to test would be. I came up with template tags...

This is where I ran into a problem. With no context associated with
a template tag, there is no way to create a tool which tests
template tags well. At first I simply started out trying to test
the template tags by pulling them out of the template verbatim.

{% load blog %}{% get_latest_posts for blog.post as posts limit 10 %}

However, when you try and test this, it doesn’t work. That is
because all this code is doing is settings a context variable, and
not outputting anything. You can create tests for trivial template
tags that just output a string, but a lot of template tags set
context variables. So without some kind of convention here, it is
impossible to write a tool that will automatically write a test for
you. That sucks!

Luckily in Django, the above test is representative of a kind of
convention in django template tags. Most template tags use the
syntax as [context_var] to set a variable in the context. So I
went ahead and wrote some code that parses template tags for these
kind of strings.

This code is valuable for some people, but is worthless if people
use another syntax for defining context variables. This I think is
a really good example of where syntax (or convention) allow you to
do more than you previously could.

You can take a look at the source code
here [http://github.com/ericholscher/django-test-utils/tree/master/test_utils/middleware/testmaker.py#L83].
It’s still a bit rough, like most of my first releases it is more
of a proof of concept.

Template Blocks

So if we create a convention for Template blocks like I proposed in
my previous post, this gives us some really neat possibilities. We
can now create a base template that “knows” what will be included
in each of it’s sections. So in turn we create a way to provide
skins or themes for Django Sites, that would be portable between
Installations.

Of course, how far we take these conventions will limit how
portable, powerful, and easy to replicate the designs will be. If
we say that all items in a menu block have to be
<ul class=menu_item>, then we can provide more functionality in
our portable base template. This is a bit too specific though,
because not all menus are lists. However, even with just a simple
structure around your base template, you can create some really
nice portable templates. You can create 1 and 2 column layouts,
simply based on where the menu, content, header, and footer are for
example.

I think it will be interesting seeing where we can embrace
conventions where possible, for the betterment of all. I think that
having Django Skins would be really neat :). Also, having tests
automagically generated for template tags is a big win. For no
other reason than because it does the boilerplate stuff for you.

Other places

I think that there are more places where conventions could benefit
us. I think I’m going to create a section in my projects on this
site dedicated to conventions for Django. Hopefully serving as a
reference for other people who are trying to use conventions in
their Django apps.

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Introduction to Python/Django testing: Basic Unit Tests

Last post we talked about how to set up and use doc tests inside of
Django. Today, in the second post of the series, we’ll be talking
about how to use the other testing framework that comes with
Python, unittest. unittest is a xUnit type of testing system (JUnit
from the java world is another example) implemented in Python. It
is a much more robust solution for testing than Doc tests, and
allows for a lot more organization of code. We’ll get into that in
the next post in the series, comparing Unit and Doc tests.

So we’re going to assume that you are picking up after the previous
post in this series. If so, you should have a basic tests
directory, with an __init__.py and a doctst.py file inside
of it. Today we are going to write some very basic unit tests, and
figure out how to wire those into your existing test suite.

Writing your first unit test

Making a unit test is a lot like making a python class. As per
usual, the
Django docs [http://docs.djangoproject.com/en/dev/topics/testing/#writing-unit-tests]
have lots of great information and examples. They will show you how
to do some easy stuff with your Django models. This tutorial will
mostly be about how to use unit tests inside Django, irregardless
of the data at hard. So let’s start with a very basic unit test.

import unittest

class TestBasic(unittest.TestCase):
 "Basic tests"

 def test_basic(self):
 a = 1
 self.assertEqual(1, a)

 def test_basic_2(self):
 a = 1
 assert a == 1

This is a very basic unit test. You will notice it is just normal a
normal python class. You create a class that inherits from
unittest.TestCase. This tells unittest that it is a test file. Then
you simply go in and define some functions (Note: they need to
start with test so that unittest will run them), in which you
assert some conditions which are true. This allows you a lot more
flexibility in the tests.

Now if you try to run these tests, you will again not get have them
showing up in your output! You need to go into your __init__.py
in your tests directory. It should now look like the following
(assuming you followed part 1 of this series):

from unittst import *

import doctst

__test__ = {
 'Doctest': doctst
 }

Unit tests are a lot easier to import than doctests. You simply do
a from <filename> import <testnames>. I named my unit test
file unittst.py, and python will import that from the current
directory. You are importing the test classes that you defined in
your file. So I could have as easily put
from unittest import TestBasic and it would work. Using the
import * syntax allows us to add more tests to the file later
and not have to edit it.

You can go ahead and run your tests, and see if they’re being
properly imported.

[eric@Odin:~/EH]$./manage.py test mine
Creating test database...
Creating table auth_permission
[Database stuff removed]
...
--
Ran 3 tests in 0.004s

OK

Awesome!

A couple neat features

There are some neat things you can do with basic unit tests. Below
I’ll show an addition to the above file, which is another test
class, with a bit more functionality.

class TestBasic2(unittest.TestCase):
 "Show setup and teardown"

 def setUp(self):
 self.a = 1

 def tearDown(self):
 del self.a

 def test_basic1(self):
 "Basic with setup"
 self.assertNotEqual(self.a, 2)

 def test_basic2(self):
 "Basic2 with setup"
 assert self.a != 2

 def test_fail(self):
 "This test should fail"
 assert self.a == 2

Here you see that you can define a docstring for the tests. These
are used when you are running the tests, so you have a human
readable name. You’ll also notice that I’ve used some more
assertions. The
python docs [http://docs.python.org/library/unittest.html#id1]
have a full list of assertions that you can make. The setUp and
tearDown methods are run before and after every test
respectively. This allows you to set up a basic context or
environment inside of each of your tests. This also insures that
each of your tests do not edit the data that other tests depend on.
This is a basic tenet of testing, that each test should stand
alone, and not effect the others.

This also seems like a good time to explicitly say that all of your
test classes and files should start with test! If not, they will
not be run! If you have a test not running and everything else
looks right, this is probably your problem. Also note that they
cannot be named the same thing! These will overwrite one another
with the last one being imported into the file running. It is
generally a good practice to name your tests something that is
certain to be unique. I generally tend to follow whatever naming
convention I’ve used for my named url patterns.

When you go ahead and run your tests, you should see one that fails
(the last one).

[eric@Odin:~/EH]$./manage.py test mine
Creating test database...
Creating table auth_permission
[Database stuff removed]
....F.
===
FAIL: This test should fail
--
Traceback (most recent call last):
 File "/home/eric/Python/EH/mine/tests/unittst.py", line 35, in test_fail
 assert self.a == 2
AssertionError

--
Ran 6 tests in 0.003s

FAILED (failures=1)

You can see the value of unit tests here. Each test is run
seperately, so you get a nice human readable error message when it
breaks. You can go ahead and make that test pass
(self.assertFalse(self.a == 2)). You get an OK from your tests,
and we can go on our merry way.

Now you can see for yourself that there are a lot of differences
between Doc tests and Unit tests. They each serve their own
purpose, and in the next post in this series I will talk about when
you should use each. Unit tests require a little bit more up front
effort; you can’t just paste something out of your python shell and
have it work. However, they give you a lot more flexibility.

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

New Design

I just pushed my new site design live. My last post got lots of
hits and I was tired of the comments about how horrible the site
looks :). Please let me know what you think. There are still a
couple rough edges, but I think overall it is a lot better!

I would like to thank my brother for putting together the design. I
really like it! I hope everyone’s eyes have stopped bleeding, and
you can now enjoy reading the site :). There are a couple rough
edges that will be worked out over the next couple days. Enjoy!

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Post a day in review

It’s the end of the Post a day for a month. I did pretty well, but
fell off about 3 weeks in because of work. First some stats.

Post stats

In [4]: Post.objects.published().filter(publish__year='2008', publish__month='11').count()
Out[4]: 23L

In [10]: for post in posts:
 cont = post.body.split()
 sum += len(cont)

In [13]: sum
Out[13]: 18517

In [14]: sum / 23
Out[14]: 805

This doesn’t really mean much, because it is simplistic
len(body.split()), but it shows that I have been writing a ton over
the past month. I have also gotten a ton of stuff done. I have
re-written 1 project, started another, and put out some ideas into
the community.

The above stats basically mean I posted 24 times (counting this
one), averaged 800 words a post (with code examples probably
inflating that)

I only missed my first day about 3 weeks in, and that was because
of work. I was working non-stop trying to launch our main websites
at work on Django 1.0, and just didn’t have enough time (energy
really) to do anything else. For Thanksgiving I was also up
visiting family in rural Ohio for 4 days, so I didn’t have an
internet connection there, which made posting hard.

Traffic stats

[image: Analytics stats]
Analytics stats

The day after that big spike I launched my redesign, so there are
probably around 1,000 hits missing from that. I got around 30,000
Page views and 17,000 Unique visitors.

Pros and cons of post-a-day

Pros

I have certainly enjoyed doing this. It has been a neat personal
challenge, and I think that the quality of my posts hasn’t really
suffered. If anything, it has stayed the same, and I have just been
posting more frequently. I had a couple of “cop out” posts (like
this one), but they never really seemed to be much less popular
than some of the ones I put some time into.

Having to do a post a day makes you do a lot more! You accomplish
so much because you need something to write about. I think that
this is probably the biggest advantage to doing post a day. You’re
forced to do something interesting each and every day, which is
something that more of us should be doing.

I also think that it’s interesting what kind of content you end up
writing. I have done a lot more tutorials and things like that. I
have found them to be easy to write, and really valuable for people
to use.

Cons

You write blog posts instead of doing things! I spent a ton of time
writing instead of coding. A lot of my posts took around an hour or
more to write, so that’s a lot of time spent. However, I think that
this is a good thing for the open source community, since the
amount of documentation versus code produced is really unbalanced.

I really wanted to review some major django reusable apps and write
up howto’s and screencasts for them, but this proved to be really
time consuming. So doing a post a day really limits your drive to
do longer blog posts (because you have to do one again tomorrow!).

After about 2 weeks I agree with other people, where they say it
turned from being fun into a burden. Not a huge burden, but it was
enough stress (along with all my other real life stuff) that it was
annoying. I missed a bunch of days at the end for this very
reason.

Reflection

I’m really glad that I did it. I broke down somewhere through, but
I still feel that I accomplished my goal of posting a lot of good
content, and getting shit done. I am so happy that the month is
over, and that Ellington is now running on Django 1.0. My life has
gotten a lot less stressful. I will be taking a lot of time off in
December, so this blog will be a bit more quiet :)

Going forward, I will try and post at least once a week, and
hopefully some more screencasts and longer form content. I think
that the kind of content that was produced during this shows what’s
hard and what’s not. Simple tutorials are great for things you
know, but doing the research to do a screencast (that doesn’t suck)
or other kind of content like that takes a lot of time!

Hope everyone enjoyed these posts, and I’ll try and keep up.

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Introduction to Python/Django tests: Fixtures

In the first two posts of this series, we
talked about how to get the basic infrastructure for your tests up
and running. You should have a file with doc tests and one with
unit tests. They should be linked into your django project with an
__init__.py file. If you were feeling adverterous you may have
even added some real content to them. Today we’re going to start
going down the road of getting some data into your tests.

This post will cover fixtures. Fixtures are how you create a state
for your database in your tests. This will be my first post in the
comparison between Unit tests and Doc tests. I will focus on
fixtures, but some other differences between the two may become
relevant throughout the post, and I will address them in turn.

How to create a fixture

Fixtures can go into a couple places, but generally it is a good
idea to put them in your applications fixtures/ directory. This
makes all of your test data self contained inside your app, so it
can be run when it is distributed. The loaddata command discussed
further down specifies where fixtures can be placed to be loaded,
if you’re curious.

Before we go about trying to figure out how to use fixtures, we
need to know how to make them. Django’s docs on this are pretty
good. Basically if you have an app that has data in the database,
you can use the ./manage.py dumpdata <app>
command [http://docs.djangoproject.com/en/dev/ref/django-admin/#dumpdata]
to create a fixture from the current data in the database. It’s
handy to note that you can use the --format tag to specify the
output format, and the --indent command to make the output
prettier. My preferred command is

#This assumes you are at the project level, right above your app.
#and that APP/fixtures/ exists
./manage.py dumpdata APP --format=yaml --indent=4 > APP/fixtures/APP.yaml

This makes for a really nice, readable fixture, so if you need to
edit it later you can. Go ahead and run this command in your
project directory, substituting your app in the appropriate places.
Open the fixture if you want and take a peak inside. It should be a
nice readable version of your database, serialized into Yaml.
Note: If you don’t have PyYAML installed, it will say that your
serialization format isn’t valid,
sudo apt-get install python-yaml gets you the package on
Ubuntu. If not, you can remove the format option and it will
default to JSON.

Testing your fixtures (how meta of us!)

Django also comes with a really neat tool to be able to test and
update fixtures. The
testserver command [http://docs.djangoproject.com/en/dev/ref/django-admin/#testserver-fixture-fixture]
allows you to run the development server, passing a fixture to load
before it launches. This allows you to run your code base against
the fixture that you have, in a browser.

This seems really nice, but the killer feature of this command is
that it keeps the database around after you kill the development
server. This means that you can load up a fixture, edit it in the
admin or frontend, and then kill the server; then run dumpdata
against that database and get your updated fixture back out. Pretty
neat! Note, your normal database name will be prefixed with
test_, so it doesn’t overwrite your normal DB. This is the one
you want to get data out of. (You may have to define it in your
settings.py file to get dumpdata to use it. This seems like a
little bit of a hack, and maybe something could be done to make
this easier.)

Fixtures in Doc tests

In what will become a recurring trend, doing fixtures in Doc tests
is a hack. Doc tests are made to be a simple answer to a relatively
simple problem, and fixtures aren’t a huge deal for them. So a lot
of the functionality that we get for free with Unit tests, has to
be hacked into Doc tests. I will just show how to do the basic
things, because implementing anything beyond that isn’t very useful
for any of us.

>>> from django.core.management import call_command
>>> call_command("loaddata", "' + 'fixturefile.json' + '", verbosity=0)

In this snippet you are basically calling it the way it is called
within Django. Normally when you are using loaddata, you would be
calling it as ./manage.py loaddata FIXTURE. . Note that the
loaddata docs [http://docs.djangoproject.com/en/dev/ref/django-admin/#loaddata-fixture-fixture]
talk about how to use loaddata normally. There are a couple of
downsides to this method; The test is very fragile, if the fixture
breaks, all of your tests fail. Also, you can really only call one
fixtures at a time because there is no setUp and tearDown that will
make sure your environment is the same for every test. Doing things
this way just makes writing tests a whole lot harder. It is indeed
a hack, and one that shouldn’t really be used unless you have a
very good reason.

Generally in Doc tests, you would create your content as if you
were on the command line. This shows how doc tests are generally
limited in their scope. You go ahead and create the objects that
you care about in the test explicitly, and then run your tests
against them. A simple example:

>>> from mine.models import Site
>>> s = Site.objects.create(url='http://google.com', query='test', title='test', content='lots of stuff')
>>> s.query
'test'
>>> s.save()
>>> pk_site = s.pk
>>> Site.objects.get(pk=pk_site)
<Site: test>
>>> Site.objects.get(pk=pk_site).delete()

This tests creating, retrieving and deleting an object. Not a lot
of functionality, but if anything inside of the model saving code
breaks you will know about it.

Django’s Testcase

The fixture story in Unit tests is much better, as you would
expect. However, before we go into how Unit tests use fixtures,
there is something that I need to explain. Because of the fact that
Unit tests are classes, they can be subclassed just like any other
Python class. This means that Django has provided it’s own Testcase
class that we can inherit from and get some nice extra Django
functionality. The
official docs [http://docs.djangoproject.com/en/dev/topics/testing/?from=olddocs#testcase]
has it really well documented.

You’ll notice that Django’s Testcase has a section for the Test
Client and URLConf configuration. We can safely skip those for the
moment because they are geared towards testing views. The relevant
sections for us at the moment are the Fixture loading and
Assertions. I recommend that you actually read the entire testing
doc, it isn’t that long, and is packed full of useful information.
However, knowing about all of the Assertions that are available to
you will make testing a little bit easier.

Fixtures in Unit Tests

The big thing that the Django Testcase does for you in regards to
fixtures is that it maintains a consistent state for all of your
tests. Before each test is run, the database is flushed: returning
it to a pristine state (like after your first syncdb). Then your
fixture gets loaded into the DB, then setUp() is called, then your
test is run, then tearDown() is called. Keeping your tests
insulated from each other is incredibly important when you are
trying to make a good test suite. Having tests altering each others
data, or having tests that depend on another test altering data are
inherently fragile.

Now lets talk about how you’re actually going to use these
fixtures. We’re going to go ahead and recreate the simple doc test
above. It simply loads up a Site object into the database, checks
for some data in it, then deletes it. The fixture handling will
handle all of the loading and deleting for us, so all we need to
worry about is testing our logic! This makes the test a lot easier
to read, and makes its intention a lot clearer.

from django.test import TestCase
from mine.models import Site

class SiteTests(TestCase):
 #This is the fixture:
 #- fields: {content: lots of stuff, query: test, title: test, url: 'http://google.com'}
 #model: mine.site
 #pk: 1
 fixtures = ['mine']

 def testFluffyAnimals(self):
 s = Site.objects.get(pk=1)
 self.assertEquals(s.query, 'test')
 s.query = 'who cares'
 s.save()

As you can see, this test is a lot simpler than the above one. It
is also neat that we can edit the object and save it, and it
doesn’t matter. No other tests (if they existed) would be effected
by this change. Notice that in my fixtures list, I only had mine
and not mine.yaml or mine.json. It you don’t add a file extension
to your fixture, it will search for all fixtures with that name, of
any extension. You can define an extension if you only want it to
search for those types of fields.

I hope that you can see already how Unit Tests give you a lot more
value when working with fixtures than doc tests. Having all of the
loading, unloading, and flushing handled for you means that it will
be done correctly. Once you get a moderately complicated testing
scheme, trying to handle that all yourself inside of a doc test
will lead to fragile and buggy code.

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Making a Django Uber-Community

My workload at work is about to get a lot less critical and time
consuming, so I was looking for a project to start on. I am really
interested in the social aspects of the web, and below I will
outline an idea that I think will be my next project.

At Djangocon there was talk by Adrian and Jacob in their Future of
Django talk about having a common identity for a person across all
Django sites. I think that this would be a really interesting thing
to work on, and make all of our Django sites much more
approachable. So in this post I’m going to lay out what I think
this would look like, how it would likely be done, and then
hopefully get some other people that are interested in it to help
me brainstorm. There is a
ticket [http://code.djangoproject.com/ticket/8941] open about it
currently.

Information Aggregation

So first off, we need to figure out what this is going to look
like. I imagine there being a central site that would organize all
of our Django related activity. The best option at the moment is
Django People [http://djangopeople.net], because it already has
a lot of that data. I talked to
Simon [http://simonwillison.net/] at Djangocon about his plans
for Django People v2, and it sounds like this is the direction he
was wanting to go. So Django People could serve as a personal
aggregator for people. I view Django People as kind of the “Profile
Page” of a person in the realm of Django. The main page could also
function as a kind of “Life stream” of the project, so people could
see what is going on Right now. I think a killer feature would be
to have people be able to join into groups, based on projects, and
have a life stream for that project. This would give people an idea
of how active a project is, how many people use and develop it, and
other interesting information that weighs into whether we decide to
use a project. Simon in his scary brilliant way already has most of
this information on the site. We just need to build a way to pull
information that we care about in, and display it well.

Then we need some kind of large aggregator of content from all of
the people in Django. I think that
This week in Django [http://thisweekindjango.com] is the place
to do that. The Django Community Aggregator on the official Django
site is lacking. I think this functionality could be pushed off to
TWID. I think that this aggregation site would replace the
aggregation of blog posts. It would hopefully support tagging,
syndicated comments, language preferences, and other thing. I have
talked to the TWID guys about doing this, and they said it sounded
like a great idea.

I view these 2 sites as the foundation for what I hope to build.
Then the question is, what other sites do we include in this
‘django information stream’? I’m going to list the ones that I
think have relevant information, and I would love to have
suggestions for other sites that would provide a service.

Sites to include

	Django Plugables [http://djangoplugables.com/] - This site is
a directory of Django reusable apps. It is a great resource, and
better than searching Google Code for ‘django-‘. Now that projects
are getting hosted on Github, Bitbucket, Google Code, Pypi, and
others, this aggregator of projects is useful. We could bring in
data about what projects a person owns. The site currently supports
handling commits, and it would be really neat to have able to pull
in all of the commits to a project, as that is the big thing that
this is all about, code.

	Django Snippets [http://www.djangosnippets.org/] - This is a
great site for Django. It allows people to submit snippets of
useful code for others. We could bring in data about their posts
and tags.

	Django Sites [http://djangosites.org/] - This is a site that
lists all of the sites that are made in django. We could pull in
the Django Sites that people have made. We could also use this data
to determine what host each site uses, and have a tally of hosts of
Django web apps.

	Django Gigs [http://djangogigs.com] - The place to look for
Django work. Pull in people looking for work, and people with job
postings.

	Other non-django sites - We could also pull in data from popular
sites about Django. Think the Django popular section of Delicious,
Reddit Django subsection, Twitter Search for Django, etc.

Ponies

Luckily in this day and age, most of the data we want is available
in RSS feeds. For other things, there are APIs available. Luckily,
most of the owners of the sites are members of the community, and
I’m hoping they would be willing to have the information
aggregated. I don’t think that there is much of a technical
challenge behind this, it is mostly just social and getting people
to push their data in suitable formats.

I think it would be interesting to talk about
microformats [http://microformats.org/], and other ways of
having the data on the public sites be available to be pulled. I
think it would also be interesting to have
OpenID [http://openid.net/] enabled on all of the sites (Django
people already has it). This would allow you to have a kind of
floating profile. If a layer was built on top of this (white listed
information providers?), you could edit your information on one
site, and it would be sent to all the others in the inner circle.

This is mainly just a braindump, but I am willing to take the lead
on this project and get people talking. The code would be released
open source and I think we could even make it into a series of
reusable apps (and maybe APIs) that could be extended to other
communities. I think we could create a best of breed/proof of
concept implementation of a community linked shared profile.

Using OAuth to share the information across the sites, and as
authentication for that and more is also another thing that I think
would be possible. I haven’t implemented anything like this before,
so I don’t know if it’s the correct technology.

There is a lot of possibility for this project, and I am really
excited to get started on it. This is just mainly a feeler to see
who would be interested in participating, and to get the ball
rolling. I’d love to hear people’s comments and criticisms.

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Software that I use: Essentials 2008

Stealing an idea/meme from
Mark Pilgrim [http://diveintomark.org/archives/2008/10/28/essentials-2008]
I’m going to do a post of the essential software that I use in a
day to day basis.
Justin [http://justinlilly.com/2008/11/02/most-used-programs-an-index/]
also did a similar post a couple days back. I think it is
interesting to talk about what kind of tools you use, because it
gives people an understanding into how you work, and also some
pointers at stuff that maybe they too should be using.

I’m going to split my lists up rather arbitrarily, so here goes.

On the Server

	Slicehost [http://slicehost.com] - I love these guys. I’ve
had my slice for a good 8 months, and they are hands down the best
web host I’ve ever had. Respond to tweets or e-mails within an
hour, great customer support, and rock solid hardware. I highly
recommend them for any sysadmin minded developer. It’s a great way
to learn a little sysadmin skills, have root on a fast box with a
fat pipe, and is generally just awesome. Best part: $20 a month for
256MB of RAM.

	Vim - The venerable text editor and perennial love of my life.
It’s great for making little quick fixes to files, and the key
bindings are burned into my brain.

	Django [http://djangoproject.com] - Big surprise there. This
site is running on Django, and I work and post mostly about it. Yet
it goes to show how good the software is that I still love it, even
when it’s my day job.

	Varnish [http://varnish.projects.linpro.no/] - This is a
really nice “state-of-the-art, high-performance HTTP accelerator”.
It sits in front of my Apache pages and caches them, making the
site blazingly fast. At least that’s what it claims. My sysadmin at
work recommended it and it’s really nice.

	Apache/mod_wsgi [http://code.google.com/p/modwsgi/] - The up
and coming way to run your Django apps on Apache. It’s a great way
to host, and makes configuration and management a lot easier.
Again, sysadmin recommended, but IANASA (I am not a sysadmin)

	Ubuntu [http://ubuntu.com] - My favorite Linux operating
system these days. I run it for all my Linux needs, desktop and
server. It makes everything really easy, and I understand it well
since I’ve been running it for a couple years.

	screen [http://www.gnu.org/software/screen/] - Screen is the
sysadmin and programmers best friend. If you aren’t using it on
your remote servers, you’re doin it wrong. It gives you some really
nice ways to attach and detach long running processes (think IRC
clients, DB migrations, etc), basically gives you a terminal window
manager, and lots lots more.

	ssh - Everyone favorite work horse. I use it for the usual
things like system administration, but also some other neat things
like SSH Tunneling, X forwarding, and as a poor mans VPN.

	bash - I don’t use any of those fancy shells out there. bash
with screen is more than anyone should need.

	Fabric [http://pypi.python.org/pypi/Fabric/0.0.3] - I am just
starting to use this as a deployment tool for my Django
applications. It makes life a lot easier and I’m really enjoying
being able to automate simple repetitive tasks.

	git [http://git.or.cz/] - I jumped on this bandwagon a week
or 2 ago as well. It seems to be becoming the defacto DVCS tool for
the Django community, and Github [http://github.com] is a really
neat tool.

	Feedburner [http://www.feedburner.com/fb/a/home] - This is a
neat app that gives you services associated with RSS feeds. They
tell me how many subscribers i’ve lost with my pointless ramblings
on a daily basis :). I also use it as an abstraction above a feed
url, so if my feed url scheme changes on the backend, I just update
Feedburner to point to the new one and nobody has to change their
feeds.

On the Desktop

A note about my development environment. I try to only use tools
that are available on Linux and OS X, because that gives me the
mobility of being able to develop easily on both. Things like
MacVim are neat because they give you Vim but in a Mac friendly
way. However, software like Textmate and Coda I don’t want to get
used to, because I think that Linux is the better choice for
developing software (at least for Django/Python).

	Firefox [http://getfirefox.com] - The awesomest web browser
ever. I don’t know what we did without Firebug. It’s great for web
development, and lots of other stuff. The extensions community is
great, and they do some good work.
Vimperator [https://addons.mozilla.org/en-US/firefox/addon/4891]
is also really neat, it gives you Vim key bindings in Firefox ;)

	Komodo Edit [http://www.activestate.com/Products/komodo_ide/komodo_edit.mhtml]
- The 5.0 version of this just got released, and I’m loving it.
This is the open source and free version of the great Komodo IDE,
from Activestate. I use it mostly because it’s cross platform, and
because it has some great Vim key bindings. I get the convinces of
an editor, with good key bindings, and not being tied to any
platform. I highly recommend it for anyone doing web development,
and I’m even considering getting the IDE version which includes
Source control management and debugging support.

	Xchat [http://www.xchat.org/] - The venerable IRC client.
I’ve been using it on Linux since I began using it, and the Aqua
port for OS X is a little lacking, but still has everything you
need.

	Adium [http://www.adiumx.com/]/Pidgin [http://pidgin.im] -
The greatest piece of IM software to be invented. Called Pidgin on
Linux, they provided the libpurple library, which is an abstraction
of their IM connectivity layer. On OS X, Adium uses this and gives
you a great UI on top. You can connect to lots of IM networks, all
in one buddy list.

	Quicksilver [http://docs.blacktree.com/quicksilver/quicksilver]/Gnome-do [http://do.davebsd.com/]
- These launcher-style programs are so integrated into my everyday
habits, I don’t know how we lived without them. Quicksilver is the
original version (that I know of), and Gnome-do is a well done
Gnome version of the same ideas. They allow you do basically run
without an Applications menu and just use a key command based
launcher to do things. If you’re not using one, I highly recommend
checking them out.

	iTunes/Amarok [http://amarok.kde.org/] - Everyone needs a
good audio player. iTunes and Amarok are the best of breed for OS X
and Linux respectively. Amarok is a KDE project, but I use it
because it is a damn fine media player.

	Terminal.app/gnome-terminal - I used to use iTerm on OS X, and
there are still a couple of small things I like better on it (key
bindings mostly). However, Terminal,app has gotten nice enough that
I can use it, and it makes it easier to use other people’s
machines. Gnome-terminal is my choice on Linux, because it’s a
great one.

	vlc [http://www.videolan.org/vlc/]/mplayer [http://www.mplayerhq.hu/]
- For your video playing needs, you can’t beat these two open
source projects. They both will play almost anything, and I tend to
use vlc on OS X, and mplayer on Linux, because of their respective
UIs. If these won’t play a media file, then almost nothing will.

	sshfs [http://fuse.sourceforge.net/sshfs.html]/macfuse [http://code.google.com/p/macfuse/]
- I love sshfs. It uses the FUSE library to mount an SSH drive on
your current filesystem. There are OS X and Linux versions of it,
and it is insanely useful.

	Skitch [http://skitch.com/] - This is a really nice tool for
sharing images and screenshots. It allows you to capture them super
simply, annotate them, and upload them for others in around 5
clicks. Great for showing website brokenness and other general
stuff.

	Twitterrific [http://iconfactory.com/software/twitterrific] -
A pretty good Twitter client for OS X. It isn’t amazing, but it’s
good enough and it does what I need. I love me some twitter, and
this keeps my addiction fed.

	iShowU [http://store.shinywhitebox.com/home/home.html] - I
use this to create those screencasts that you all love :) It’s a
great program for doing screencasts, it’s pretty simple, and does
one thing well. I’d also be curious if anyone has any free
alternatives, or linux based screencasting apps that they can
recommend.

	Transmission [http://www.transmissionbt.com/] - A bit torrent
client for the mac. It’s simple and easy to use, I like it a lot.
It was actually ported to Linux and included in Ubuntu I do
believe.

Apps in the Cloud

	Google Reader - My current RSS reader. It’s simple, does what I
need, and generally stays out of my way.

	Gmail - My e-mail client of choice. It’s just a great way to do
e-mail, I can access it from everywhere, and the spam filtering is
amazing. I’ve gotten like 1 ever, and my e-mail is right on the
bottom of this site :)

	Google Analytics - What seems to be the big name in web
analytics. Yahoo has a
competing offering [http://web.analytics.yahoo.com/] that they
launched recently, which has kicked google into gear with new
features. Competition is a great thing, and we’ll see if it’s worth
switching over time, but for me it’s still Analytics.

	Delicous [http://delicious.com/forsaken] - The great bookmark
sharing service. I was using Ma.gnol.ia for a while, but most
people at work are on delicious. I recommend culling a small
network of like minded folk, and getting your network links in RSS.
It is by far the best link feed I have, and beats any impersonal
aggregator.

	Last.fm [http://www.last.fm/user/i7981] - I have over 32,000
tracks ‘scrobbled’ on their site. They know my taste of music
scarily well, and it’s just really neat data to have in public.
Plus they have some good APIs and feeds for accessing it.

	Pandora [http://pandora.com] - These guys have a brilliant
music recommendation engine. I am constantly delighted and amazed
by what music thay choose to play. You give it an artist and it
plays similar music. I use this when my library is becoming stale,
or I’m looking for good new music.

	Facebook [http://facebook.com] - I like it less and less
everyday, but the utility in it can’t be denied. Keeping track of
far away friends, old friends, and generally most of the people I
know socially is key. I really hate how all the data is locked up
and all that, but everyone uses it, so there isn’t much you can do.

	Programming Reddit [http://www.reddit.com/r/programming/] -
I’ll check out the front page something, but the programming
section seems to have some quality content a majority of the time.
The Python [http://www.reddit.com/r/python/] and
Django [http://www.reddit.com/r/django/] sections also have a
decent signal to noise ratio.

	Hacker News [http://news.ycombinator.com/] - I don’t use
reddit or HN that much, but Hacker news consistently has
interesting information. I don’t get the RSS, but they are really
nice resources when you’re bored, or looking for inspiration.

	Kayak [http://kayak.com] - The best way that i’ve found to
find flights online. Great tool for traveling.

	Craigslist - Everyone’s favorite classifieds site. I bought a
Wii for super cheap recently with lots of games. The free section
is also a favorite.

	Freecycle [http://www.freecycle.org/] - A personal favorite.
It’s like recycling, but people give stuff away for free. It’s like
craigslist’s free, but generally less sketchy. This is how we got
most of our furniture in college, it’s generally in good shape.
People are usually just happy to see it go away to good people.
Highly recommended!

Dot files

Brian [http://oebfare.com/blog/2008/nov/06/essentials/] also
posted this similar post yesterday. He included his dot files, so I
figured I would share mine.

This is my .bash_profile:

export PYTHONPATH=$HOME/Python:$HOME/Python/Modules
export PATH=$HOME/bin:$PATH
export DJANGO_SETTINGS_MODULE="settings"
export HISTFILESIZE=10000000
set -o vi
export EDITOR=vim
export PS1="[\u@\h:\w]$ "

alias rs='/usr/bin/python ~/EH/manage.py runserver 67.207.139.9:8000 --settings settings_debug'
alias mp='/usr/bin/python ~/EH/manage.py'
alias sp='/usr/bin/python ~/EH/manage.py shell_plus'
alias bkup='/usr/bin/python ~/EH/manage.py dumpdata'
alias destroy-pyc='find . -name *.pyc -delete'
alias dj='cd ~/Python/Modules/django-trunk'
alias a2='sudo /etc/init.d/apache2 restart'
alias tm='/usr/bin/python ~/EH/manage.py testmaker 67.207.139.9:8000 --settings settings_debug'
alias p='python'
alias x='exit'
^l clear screen
bind -m vi-insert "\C-l":clear-screen
^p check for partial match in history
bind -m vi-insert "\C-p":dynamic-complete-history
^n cycle through the list of partial matches
bind -m vi-insert "\C-n":menu-complete

My terminals look like this: [eric@Odin:~/Python]$. I use Vim
keybindings in my terminal as well (I’m addicted, what can I say).
I also use similar git commands to Brian, so I’ll just let his
stand as the original awesomeness.

I hope you all find these links useful and interesting. It gives
you a little peek into how I spend my days. I’d love to hear what
everyone else does. If you have any suggestions for things that I
should probably be using, please feel free to let me know.

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

The problem with Django’s Template Tags

There are a lot of things that I love about Django. Template tags
are one of them. However, they do have a couple of warts that
bother me. I know that there’s a problem when I actively look for
another way to accomplish something instead of writing a template
tag. I view them as a kind of last resort; thinking ‘can’t we
accomplish this with a Manager instead’? I think that we need to
work on making useful template tags a little bit easier to make.
Django goes a long way in doing this with the simple_tag and
inclusion_tag types of tags. However, I think there needs to be
something more.

When I look at how template tags are implemented, it seems that
most of the Node classes are implemented the same way. This means
that this implementation is probably sane. A lot of the differences
I see are in the way that input is parsed. Template tags are
basically just a string that is then passed to a function. The
template tag function is responsible for parsing this string
correctly and passing it off to a Node to be rendered. Because a
template tag string can in theory contain anything, it makes it
really hard to parse these strings in any kind of standard way. I
think that this is generally a good thing, because this flexibility
is nice when you’re trying to do really complex things. However, I
think that we can create some relatively simple tools that will
help us wrangle 95% of common cases.

I don’t know if the right answer is to include something in Django.
So I’m going to look through the different approaches that I’ve
seen taken to parsing template tags, and try and figure out the
best way to do it. If there’s another way to do these, then please
let me know.

If len(bits) == MAGIC_NUMBER

I’d say that this is probably the most pervasive way of doing
template tags. The django source uses it in some places, and a lot
of people do it this way. It basically involves breaking the
incoming string into an array, and checking to see what is in each
index of the array. For example, if your tag syntax looked like
do_something for app.model [as contextvar], which has a default
context variable if you don’t pass one. The code to this approach
would look like:

def parse_stuff(parser, token):
 bits = token.contents.split()
 if len(bits) == 5 and bits[1] == 'for' and bits[3] == 'as':
 return FooNode(bits[1], bits[3])
 if len(bits) == 3 and bits[1] == 'for':
 return FooNode(bits[1])
 else:
 raise template.TemplateSyntaxError, "%s: Fail" % bits[0]

As you can see, this quickly gets cumbersome with larger tags, and
makes tags annoying static. It’s a pain to have to remember the
order of arguments and other things that don’t need to matter.

Regular Expressions

Another way that I have seen these tackles is with the use of
regluar expressions. They look a little something like this:

def parse_stuff(parser, token):
 import re
 default = re.compile('tagname for (\w+) as (\w+)')
 no_as = re.compile('tagname for (\w+)')
 if default.match(token):
 return FooNode(group(0), group(1))
 elif no_as.match(token):
 return FooNode(group(0))
 else:
 raise template.TemplateSyntaxError, "%s: Fail" % token[0]

Again, this has the same problems as the above approach. It’s a
little bit more annoying because of python’s regular expression
support lacking, but it gets the job done. I don’t want to be
writing a regex for every possible pattern though.

What I propose

I say that if we standardize the variables used for certain things
in templates, then we can make some really simple parsing utils
that will do our job for us. There are already a certain amount of
best practice with template tags for what to use as command
variables, and below I will list out the commonly used ones.

	as (Context Var): This is used to set a variable in the context
of the page

	for (object): This is used to designate an object for an action
to be taken on.

	limit (num): This is used to limit a result to a certain number
of results.

	exclude (object): The same as for, but is used to exclude things
of that type.

This is just a basic set of common variables that are ‘special’. I
think that it makes sense to start parsing template tag input
strings for these strings. I wrote a little snippet to do this for
you.

def parse_ttag(string):
 #This could be token.contents.split()
 bits = string.split()
 tags = {}
 possible_tags = ['as', 'for', 'limit', 'exclude']
 for index, bit in enumerate(bits):
 if bit.strip() in possible_tags:
 tags[bit.strip()] = bits[index+1]
 return tags

And when I run it on a simple example, you see the value in this
approach:

>>> parse_ttag('test as word for for.bit limit 23')
{'as': 'word', 'limit': '23', 'for': 'for.bit'}

This approach is nice, because it doesn’t matter what order the
arguments are in. It simply returns a list of the keywords that you
care about, and what their value was. I think that this makes it a
lot easier to make a template tag, at the moment. This could also
be extended to support multiple uses of each keyword, by using a
list instead of a string as the value in the dictionary.

This is a simple little solution, and there is plenty of room for
improvement. I think that there are some other ways to do much
neater things with this, but it has worked. We could even go out
and write some of the most common use cases for template tags into
a function that simply parses them and returns a node.

def parse_ttag(string):
 return context_for_object(token, FooNode)

Where this would call FooNode with the correct arguments. It would
know that the correct syntax was [WhateverTag for Whatever as
Context]. This would then just pass into a FooNode(Whatever,
Context), where it could then do the actual action that was taking
place. The template tag parsing doesn’t need to care what the
objects are, it is just parsing strings, and making sure that
certain values are passed into the correct argument.

Here is a very basic implementation, that does nothing, but shows
the ideas behind what I’m talking about.

class FooNode():
 def __init__(self, por, _as='default'):
 print "Making Node: for:%s, as:%s" % (por, _as)

def parse_ttag(string):
 bits = string.split()
 tags = {}
 possible_tags = ['as', 'for', 'limit', 'exclude']
 for index, bit in enumerate(bits):
 if bit.strip() in possible_tags:
 tags[bit.strip()] = bits[index+1]
 return tags

def some_random_tag(parser, token):
 return context_for_object(token, FooNode)

def context_for_object(token, Node):
 """This is a function that returns a Node.
 It takes a string from a template tag in the format
 TagName for [object] as [context variable]
 """
 tags = parse_ttag(token)
 if len(tags) == 2:
 return Node(tags['for'], tags['as'])
 elif len(tags) == 1:
 return Node(tags['for'])
 else:
 #raise template.TemplateSyntaxError, "%s: Fail" % bits[]
 print "ERROR"

>>> some_random_tag('fake','test as word for for.bit')
Making Node: for:for.bit, as:word
<__main__.FooNode instance at 0x23aaa8>
>>> some_random_tag('fake_parser', 'fail whale')
ERROR
None

Notice how easy and logical the implementation is using the
parse_ttags function, I think that the tags[‘for’] abstraction is
a really good one. It takes the template tag string and parses out
what you really care about. Now if we just write these for the most
common cases of Template tags, we could make our lives a lot
easier. I also assume that this can probably be done with this
template parser in Django, but I’ve never really seen it used, or
used it myself. Hopefully this is already done for us, and just not
well documented.

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

The times, they are a changin

A couple posts back, I was talking about software that I use all
the time. I was going through and linking to all of the software. I
would go to google, type in the project name, go to the first
result, and copy that URL back into my post. I figured that there
had to be a better way. Any software project worth it’s name owns
the top result in google.

The web is a dynamic place, and websites move, change, and
disappear all the time. The popularity and importance of some
things change over time as well. So I was thinking about how to go
about linking to the most popular thing for a search. It also
happened to be useful for my last post and linking to things. A
similar approach could be used with Wikipedia. Creating something
that just linked to somethings wikipedia page.

Show me the code.

I couldn’t use Google, because I couldn’t find a good web search
API for them. Yahoo however has a
really nice one [http://pysearch.sourceforge.net/] that is out
there to use. This, combined with James Bennett’s awesomely useful
template utils [http://www.bitbucket.org/ubernostrum/django-template-utils/overview/]
allowed me to whip this up in about 10 minutes. Here’s the code
below.

from template_utils.nodes import ContextUpdatingNode
from yahoo.search.web import WebSearch

class SearchNode(ContextUpdatingNode):
 def __init__(self, search):
 self.search = search

 def get_content(self, context):
 srch = WebSearch('EricSearch', query=self.search)
 res = srch.parse_results()
 return {'top_url': res.results[0].Url}

@register.tag
def first_yahoo_link(parser, token):
 return SearchNode(token.split_contents()[1])

Easy as pie, and awesome. This ties into my previous post about
template tags being hard to write. If you just want to make a
template tag that sets a context, it’s as easy as making a node and
returning a dictionary in the get_content() function. This
isn’t a super robust solution, but now i can do
{% first_yahoo_link "search terms" %} and {{ top_url }}
will contain the Url of it!

Also note how easy it is to use Yahoo’s search api! That’s awesome.
If this was on a more highly trafficked site, you would want to
cache the results (maybe daily, because they shouldn’t change
much). I may go ahead and do a tutorial on how to do caching with
template tags and template-utils if people are interested in it.

The observant will note that this doesn’t help me writing a blog
post, because there’s no way to call a template tag from within.
That might be something for me to cook up later this month. The
template tag is still neat however, for introducing yahoo’s web
api, and template-utils.

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Starting a Django Conventions Project and Reference

During the last month I have proposed some conventions for Django,
mostly in the realm of templates. In doing so I have looked around
for other documented places where conventions are mentioned. I
haven’t found a really good reference for Django conventions.
Brian’s post [http://oebfare.com/blog/2008/nov/04/reusable-app-conventions/]
was a good example of reusable app conventions, and the
Pinax Project [http://pinaxproject.com/] is a great reference
implementation. However, I couldn’t find any simple reference for
regularly used conventions in the Django world.

I don’t know if this will be useful for people, but I think this
goes along the whole convention/pattern ideal. If we all use a
common naming, syntax, and style in places where they can be
arbitrary, then we gain a lot of value of being able to understand
whats going on in others code. So I have started a project that
hopefully will act as a
reference for Django Conventions [http://ericholscher.com/projects/django-conventions/].

Currently it is pretty sparse, but I think that having that
document in any form is a great step. I’d love to hear some
feedback, and it needs a lot of work, so feel free to email me or
leave comments here with your additions and criticisms. If this
idea becomes useful, I would be fully in support of including it in
the Django Documentation or something along those lines as well,
but I don’t know how “official” this will really be. For the moment
just consider it my hair brained idea of how things should be done
:) Cheers.

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Year in Review

Well it’s been a crazy roller coaster year for me. So this post is
going to be the typical recap of what’s gone on with my life and my
blog over the past year. I’m really happy with where I’m at both
professionally and personally, and 2008 has been an interesting
year for me.

Last semester and Graduation

It’s kind of surreal to think that at the beginning of this year, I
was still a senior at the
University of Mary Washington [http://umw.edu], living in
Virginia with some of my best friends in an awesome house. My final
semester senior year was a lot of fun, I took very little in the
way of course work. I was employed by
CACI [http://www.caci.com/index2.shtml], which is a defense
contractor at the
Naval Surface Warfare Center Dahlgren [http://www.nswc.navy.mil/].
I was doing Java, Javascript, and a little Perl code for a Navy
portal at the base. It was a really fun job socially, but the
technology (other than Javascript libraries) was pretty dull.

At school I was finishing up my senior/honors project using Django.
This turned out to have probably been the most important decision
of my college career (hindsight being 20/20). I went to the
National Conference on Undergraduate Research [http://ericholscher.com/blog/2008/feb/11/ncur-22/]
to present the ideas from my senior project. This was a really neat
place, and I was exposed to a lot of interesting things other
people were doing.

We had a really crazy Primary Election season, which included
Bill Clinton [http://ericholscher.com/blog/2008/feb/11/bill-clinton/]
talking at my school, which I saw. Obama also later spoke at UMW
(His famous in the rain speech), which i would have died to see.

I applied for a
couple different jobs [http://ericholscher.com/blog/2008/feb/20/job-hunt/]
all over the country after I graduated. I had phone interviews with
Yelp, a Wiki startup, and a couple other places. I interviewed and
was offered a job by Zope [http://zope.com/] which randomly is
based in the town I went to college in. I also applied at
The World Company [http://www.mediaphormedia.com/], the
birthplace of Django in the middle of the country, Kansas. I got
offered the Jobs at Zope and the World Company, so I had to choose
which to pick. As I’ve talked about before, I chose Kansas, and it
has all been a blur since. I
graduated [http://ericholscher.com/blog/2008/feb/3/graduate/]
from UMW.

The epic journeys

I
accepted the job [http://ericholscher.com/blog/2008/jun/21/job/]
right before graduation at the end of April, subsequently quitting
my old job at CACI. I arranged to start in Lawrence on July 1,
giving me all of May and June to enjoy summer. I had some decent
savings and decided to move to Lawrence with no money, and to
travel a bunch before I went.

Over those 2 months I took a bunch of different trips. I went to
Boston for a week [http://ericholscher.com/blog/2008/jun/2/goodbye-east-coast/],
going to Barcamp Boston, which was the first conference I’d ever
been to. I met some amazing people and got really excited about the
culture that surrounds the profession that I had chosen. I also
just got to tour around MIT and Harvard, met some great people
through friends, and just had a great experience.

I also went down to North Carolina, and to the
Outer Banks [http://www.outerbanks.org/index.asp]. The Outer
Banks are one of my favorite places on earth, and totally recommend
them to anyone. They have some of the best waves on the East Coast,
and a completely relaxed and beautiful beach atmosphere. I really
hit the beach hard because I was moving to KANSAS!

I went to Maryland to a friends late graduation party, and to visit
family that I don’t see very often, even less often now that I live
in Kansas. I also went all around Virginia, to Nelson County to
visit my friend Josh’s house. Charlottesville to see some music and
visit friends. Virginia Beach (Home) a little bit to go surfing and
visit friends and family. Berryville (where I grew up) to visit old
friends and the rest of my family.

So at the end of June, I move out of my house, and leave for
Kansas. Great first half of the year.

Lawrence Chronicles

I was
in love with Lawrence [http://ericholscher.com/blog/2008/jun/14/lawrence-day-1/]
on the first day. It’s a great town and I love it to death. I moved
into a Co-op [http://www.lawrencecoop.org/uksha/Olive.html] for
July-August so that I could find a place to lease and have an
instant social network. The people I lived with were amazing, and
it turns out that one of my co-workers had lived there while she
was in college!
Cool [http://www.flickr.com/photos/ericholscher/2675719446/].

The job at the World Company turned out to be amazing, working with
lots [http://postneo.com/] of [http://mintchaos.com/]
brilliant [http://www.b-list.org/]
people [http://playgroundblues.com/]. On my second week on the
job,
DjangoCon [http://ericholscher.com/blog/2008/jul/7/djangocon-2008/]
was announced. It’s really neat feeling like you fell right in the
middle of something amazing going on. I had a hunch from afar, but
it turned out to be more true than I could imagine.

My birthday was on July 9, and right around my Birthday I was added
to Django’s Community Aggregator. This was the first time that my
blog had ever gotten more than 20 hits a day (and all those 10+
were when I sent my resumes around). I started getting people
reading the things I was writing, and actually appreciating what I
was saying. It’s really neat to have a way to talk to people, and
have them be excited and listen to what you say.

At the end of july, I
released [http://ericholscher.com/blog/2008/jul/23/automating-tests-django/]
my first open source project, testmaker. This was met with a great
response from the community. This is where I really started to
appreciate and understand the value of the open source community. I
got great feedback, inspiration from comments, and a great dialogue
around the project. It is tiny compared to some of the things that
people do, but I was floored with the response.

Djangocon was in September and was more amazing than I could have
anticipated. I gave an incredibly nervous lightning talk (having
broken my demo 5 mins before I went on, and fixed it). I learned so
much, got to meet some amazing people, and had lots of fun. I see
now that I didn’t do a writeup post, which is sad.

November was
post-a-day month [http://ericholscher.com/blog/2008/nov/30/post-day-review/]
that was a lot of work but very rewarding. I did it with a lot of
other people in the community and I think it was a great effort and
it worked out really well.

December was really laid back. I started a couple more
projects [http://ericholscher.com/projects/] which are going to
be getting some love in the new year. I went to Jamaica on
vacation, and went back to Virginia to visit friends and family for
2 weeks.

Wow

A lot of things have happened this year, and I’m grateful for where
I am and what I’m doing. It’s been an amazing ride, and I can only
guess as to how 2009 will be. I’m sure it will be another great
year, and things are only looking up. I want to thank everyone for
reading my blog, and I want to wish everyone a happy new year full
of blessings and insights.

Happy new year!!

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Updating website

I’m starting to update my website, moving everything from .shtml
over to cgi’s because it’s easier. Also building out my web-based
lyrics script to include saying lyrics are bad or good. Also trying
to figure out a good way to automatically get all of the lyrics
from an artist whenever one is found. Then run this in the
background and they will be in the database cached when requested.

Also thinking of displaying a directory of artists, or even an AJAX
interface to typing in the artist names and it has suggestions.
That is seriously cool and might be able to be accomplished, and
done well. We’ll see how things go, I might even get credit in my
AJAX class for doing the lyrics thing. I only had time to do
research getting all of an artists songs today. In the spare time i
have between 15 credits and 12 hrs a week at my internship. Time is
scarce, and needs to be spent doing creative things. :)

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Good Software is SO hard to find..

I just installed Songbird which is a really neat music player built
on top of XUL (of firefox fame). It’s cross platform (yey good
Linux support) and is currently only a developer release. It’s
working great for me and I’m excited about the possibilities. One
pet peeve is that it didn’t have a systray icon for it, one feature
that i’ve grown accustomed to. Browsing their forms someone pointed
to Alltray, which allows you to launch a program “alltray program”,
and it will automatically create a systray icon for it. COOL! How
have I not heard of this before?

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

iPhone

Apple just released the iPhone today. This looks like a paradigm
shift in the world of mobile phones. It’s amazing how much a
company can innovate when it doesn’t have it’s own silly motives to
protect. Most other companies have ‘walled gardens’ or their own
internet that they are trying to make money off of, so they don’t
offer Wifi access. It runs OS X, how long until this thing gets
VoIP compatibility? They are Partnering with Cingular, so they may
nix that idea, but it has to be on everyone’s minds. The iPhone
looks damned impressive, and if you go to their site you can see
the amazing prototype.

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

People

It’s amazing the difference having one person in your life can make
or break your entire existence. Usually this would apply to a
significant other, but a best friend is just as valuable if not
more. Went to JMU for less than 24 hours with a good friend from
school; to meet my best friend since second grade. We all got along
marvelously and it was one of the best nights i’ve had in a long
while. My spirits are high, I feel motivated, and my faith in
humanity has once again been restored.

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Music

We had a little jam session at my house over the past weekend. My
roomate Tessie recorded it and here is a link to the mp3:
http://ericholscher.com/music/us.mp3 Hope you enjoy it, its lots of
drums, a theramin, and a bass.

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Network KVM

This neat little program lets you use your network as a KVM. You
set up a ‘server’ computer where you use the mouse and keyboard,
and then ‘client’ computers on the right of left of your server,
and when you go off the screen of the server, it automagically goes
to control the mouse and KB of the client machine. Really neat.

http://synergy2.sourceforge.net/

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Goal

I hope to write atleast one post a day, saying what I learned from
that day. Mostly like a journal, and not super interesting to most
people. I feel like this will help me improve my writing and give
me content to write about. (I hope my days aren’t so boring that
the old adage doesn’t apply)

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

UMW Blog Ring

Another idea to write up:

Start a blog writing website with fellow ambitious and interesting
UMW students (Jeff, Lewis, Sam, Joel to start?)

Note: WRITE blog instead of read blog

Note2: WRITE about blogs you READ!

Note3: umwblogs.org exists, why were we not informed?

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Digg/Wordpress plugin ideas

A lot of websites have those annoying ‘digg this’ buttons, with 0
diggs on it. How silly that makes them look. I feel like an idiot
reading a web page that nobody else cares about...

How about implementing a feature (wp plugin?) that checks the diggs
for each of your posts, and only includes the digg button on it
when the number of diggs reachs N (20?).

Also, what if digg/reddit/etc. created a protocol that notifies a
website when a post of theres is promoted to the front page, and
even maybe integrate it into wordpress (blogging engine x), where
it would be alerted if the post was on the front page (like a
trackback), and then automatically make the page static instead of
dynamic, presumably not crashing the server...?

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Firefox Extensions I Use

Basically just a knowledge dump of The firefox extensions I use and
where to get them for future reference.

Download Statusbar:
https://addons.mozilla.org/en-US/firefox/addon/26

FireGPG: http://firegpg.tuxfamily.org/ : allows you to use GPG in
forefox, useful for Gmail and Ubuntu’s Launchpad (need it for their
e-mails)

Adblock Plus: https://addons.mozilla.org/en-US/firefox/addon/1865 :
also need the updater:
https://addons.mozilla.org/en-US/firefox/addon/1136

Firebug: http://www.getfirebug.com/ : must have extension for
Web/JS/CSS development

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Cool site: archive.org

The Internet Archive is one of the neatest sites on the internet. I
like them for a variety of reasons. First and foremost is the live
music archive, they currently have 44,134 live concerts posted on
their website. Completely free to download/stream til your hearts
content. Most of the bands I like these days are on there, and they
have an extensive Grateful Dead collection.

They also archive lots of other things, including websites, video,
and documents. The main page gives you a partial list of all of the
things that they are archiving. Really neat stuff.

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Writing Advice?

The story starts out unusually. One of my friends is trying to
write a very important letter to a family member. He doesn’t know
how to write it. He has the outline, but is very worried about the
implied psychological impact. They worry about the reader thinking
too much; “was he trying to be so nice and just said all nice
things”, or on the inverse “Wow, how hateful, full of hate he must
have been”…We brainstorm the answer to the question which will seem
obvious.

My advice: Just write. How are you feeling? He was feeling hatred
at the time; for having to write the letter and towards the
situation in general. That’s the advice I give….RANT, spell out
everything bad about the situation, the aunt, and writing in
general if you will. Then move on….

It’s a Computer Science idiom…Take the top and the bottom, then
figure out what actually works. Write that rant full of hate. Then
turn it on it’s head, write that letter full of apology, understand
the other persons point of view, get on the same page. Then write
your actual letter.

Once you get past the abstract idea of the top and bottom, into the
physical representation, it is much easier to analyze. Once you
know what you said in your utmost anger and your utter sympathy,
you know that you can’t say that in actuality.

Once you know what not to say, you can narrow down what to say.
Writing an emotionally charged letter like that isn’t about saying
the right thing; it’s about NOT saying the wrong thing. Once
emotions are involved, you have to direct them. If you can keep
them from going down the rabbit hole of love or hate, you are in an
infinitely safer territory. Emotions have to be kept within bounds,
not exasperated and poked until a response. In situations like
these, no response is a good response.

My friend was having trouble writing the letter, that’s where my
advice came from. I told him that it would be easier to write a
rant than to not write at all. He was flustered by being stuck at
the same point, at an outline with no perfect paper written. I told
him to avoid perfection, work outside in. Write the top and the
bottom of the emotional plane, and then work your way inside. His
default emotion was perturbed, so the end result will end up more
angry than passive, but you can’t achieve perfection in a single
keystroke. You have to have a start somewhere. The easiest way to
get over writers block is to write what you feel, then don’t send
it, and actually write what you really feel. This context is
uber-important. You don’t send an e-mail when you’re angry, you
just write the first draft.

Write to the top, write to the bottom, write to the middle. Figure
out where your allegiance lies, and decide appropriately from
there. It’s amazing how much easier it is to edit a paper when your
reference is a very strongly worded statement, instead of an ideal
idea. Making yourself sound more tempered from absolute crazy is
trivial; making yourself sound level-headed for 2000 words on your
first try is quite the accomplishment.

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Last semester in stone

Registered for classes today, pretty excited about my schedule. My
last semester senior year isn’t going to be a cake walk like it
should be (because i’m lazy), but it’s going to be much better than
this one. Taking the second part of my Physics lab (required) and 2
PE classes, tennis and weight training, fulfilling all of my
required classes for the school. I’m going to be continuing my
senior Independent Study Project, for another 3 credits. I’ll be
taking a 300-level CS database class to round out my Compsci
Education. I will then also either be taking discrete math or intro
to film studies, pass/fail. If discrete doesn’t look like it’ll be
too much work i’ll take them, if not i’ll do film studies and
coast.

I’m excited about taking the database class. I feel that is one of
the few wholes in my CompSci theory education, and it was the one
class I was sorry I hadn’t gotten to take. I don’t understand DB’s
well at all, and this class should fix that. It will make me a
better web developer, and understanding of DB logic is applicable
to a lot of the field, in the form of data storage and data
relationships.

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Schoolwork

Implemented Background processes, the ps command, and the kill
command in GeekOS today for my Operating System class (hard shit!).
Really neat stuff though.

I am also hacking arounc w/ Django to implement my independent
study. So busy...

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Fall is coming (and good content)

It’s almost daylight savings time, this weekend. That makes me sad,
I hate it getting dark at 5pm. It will make work much more
manageable though. My current schedule is working 2-8 Monday’s and
Wednesdays. I adopted this schedule to make sure that I actually
got some hours over the school year. 12/hr work weeks aren’t too
bad, but it is pretty hard with my hardest ever semester of
school.

Today I read more about entrepreneurship, an issue that vastly
interests me more and more every day. I feel like I have the right
personality to start a company, and the skillset of engineering to
do it. The computer is my canvas, the internet my vocabulary, and
programming my paint. The huge freedom and flexibility afforded by
the computer and internet are awe inspiring, but also very
intimidating. I can most literally do anything, so what does one
do?

I guess this situation is better than the people who got liberal
arts degrees, namely most of my friends. They are in the same
situation as I am, except without the skills to create something
new, and without the vast salary potential. I am grateful that I am
blessed to enjoy doing something that most other people do not. The
power of computers and the internet is so awesome.

To start a company I need to have people to start it with. The CS
department at Mary Wash has been slow in giving me people who I
feel like I could do that with. I get along with some of the
people, but don’t consider a large amount of them good friends
though. A lot of people seem to not actually be interested in CS,
or at least not for the right reasons. A lot of ‘suffer through CS
education to get paid a lot’ type, like doctors or lawyers. I have
a couple of prospects for co-founders, but I wish I had a bigger
network of Computer Science folk.

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Ideas need context

Having this project to work on gives me more ideas. The ideas have
context. Context makes them more valuable than abstract ideas that
they once were. My context allows others to relate my ideas to
their context easier than abstract ideas. Nice abstract idea isn’t
it? :)

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Getting Real

Just started reading a book by the guys over at 37signals. It looks
amazing. Completely free online. I’ll get back with a review once
I’m done, and hopefully with a finished website as well :)

http://gettingreal.37signals.com/toc.php

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Browser Tabs

My first four browser tabs have been the same for the past couple
hours. The first is the root of all evils, and the other three are
productive!

Tab1: Google Reader (1000+) Tab2: Beautiful Soup documentation:
awesome HTML parsing library that i’m trying to learn to scrape
events websites. Tab3: Dive Into Python: Time to learn Python as
well as learning Django... Tab4: My website! w00t! Making small
progress....

Updated the OpenID libraries to make them smell better. Added
little parts to my blog, and around the site, little small
updates.

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Lego Lovers

I know you loved Lego’s as a kid. I wasn’t hugely into them, but
this site makes me wish I was.

http://www.brickshelf.com/

Awesome!

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Python Easy Install

EDIT: Hey everyone, I wrote an updated post that actually tells how
to setup a django app (and any python app) using easy install.
Check it out!

I found a neat python module that lets you install other python
modules. I have set it up on here, and it makes it really easy to
install all of the things that I need for my projects. Yey..

http://peak.telecommunity.com/DevCenter/EasyInstall#traditional-pythonpath-based-installation

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Merry Christmas

Merry Xmas everyone!

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Stanford U

Just found that there is lots of awesome college content on iTunes.
Standford U has some awesome stuff, I recommend watching Steve Jobs
2005 Commencement speech. Inspiring.

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Surfing in Kansas

Django

Wordpress you were good to me. I’m going to migrate all my posts
over to a new Django blogging app I’m writing. Part of my website
for the Event Calendar and learning Django Done soonish hopefully

Weee

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 previous |

 	Surfing in Kansas

First Post

Testing Django Awesomeness

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	Surfing in Kansas

Index

 Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 _images/me.jpg

blog/drafts/index.html

 Navigation

 		
 index

 		Surfing in Kansas »

		Announcing Grok the Docs
		Example

		A Better Javascript Workflow with Django
		One big file

		Introducing node-style requires

		Imports in the browser

		The problem

		Django Integration

		Conclusion

		Codes of Conduct, an Organizers Perspective
		Code of Conduct

		Conclusion

		Conference in a box
		Ideas

		Google Summer of Code Book Sprint 2013
		Monday
		Heresy

		Audience and Outcomes

		Tuesday
		Table of Contents

		Promotion Plan

		Compare and Contrast

		Start writing

		Wednesday

		Thursday

		Friday

		Take aways

 © Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

_static/comment-close.png

_static/ajax-loader.gif

_static/file.png

blog/drafts/better-javascript-workflow-with-django.html

 Navigation

 		
 index

 		Surfing in Kansas »

A Better Javascript Workflow with Django

Javascript has always been the bane of my existence as a developer.
It was the part of the process of developing that I would dread.
On the last project I worked on,
I found a very simple change that significantly improved my experience writing Javascript.

One big file

Historically,
Javascript lived in one really large file.
If you wanted to break up the file,
you had to edit your HTML files to make sure they were in the correct order.
This always felt really brittle,
so I never actually split up my code into multiple files.

Even if you split things up into different files,
you had to reply on implicit import mechanisms.
A variable would just magically appear in your file because of the import order of the scripts.
This incredibly brittle and unintuitive way of working puts up a high barrier to writing well-factored code.

Introducing node-style requires

Node.js has the concept of require.
It works very similarly to Python’s import mechanism.

client.js

var events = require('./lib/events')
events.awesome()

lib/events.js

module.exports = {
 awesome: awesome
}

function awesome() {
 console.log("Do awesome stuff.")
}

The module.exports is similar to Python’s __all__,
allowing you to explicitly set your public API.

The require system allows you to factor your code into multiple files.
More importantly,
this allows for code isolation.
I can put logic surrounding setting up event handlers in the events.js file,
without having it leak into other sections of the code.

Architecting code in this fashion allowed me to write much better code.
It gives you an entry point into the code,
where the uppermost logic lives.
Then you can dive into each specific file to understand that subsection of code.
All the benefits normally associated with an import system come to bare.

Imports in the browser

It’s great that node has an import system,
but that doesn’t help me when I’m writing Javascript for the browser.
browserify [http://browserify.org/] is a project that basically allows you to have node-style imports in the browser.

Browserify takes all of your Javascript files with imports,
and renders them into one large file you can include in your project.
It does this by pointing to an “entry-point” file,
which is the top-level entry point into your code.
In the example above,
client.js would be the entry point.

To user Browserify you simply install it:

npm install browserify -g # -g means globally

Then run browserify on your top-level file:

browserify client.js > bundle.js

Browserify outputs the Javascript to stdout,
so you can simply redirect it to a file that will contain your bundled Javascript code.
The “bundle” is what you include in your HTML:

<script type="text/javascript" src="bundle.js"></script>

The problem

As with all preprocessors,
the main issue is the workflow around rendering the code into its final form.
There are two general approaches for handling this:

		Have a program watch for file changes, rebuilding on change.

		Rebuild source files on request.

You can use programs like watchdog [https://pypi.python.org/pypi/watchdog] and grunt [http://gruntjs.com/] to handle rebuilding of files automatically.
The main issue with this is the feedback loop.
You can save a file and reload your browser,
and you aren’t sure if it’s serving the latest change you made.

I generally prefer having it rebuild the source on request.
This works well until you have large files that have to be compiled,
where reloading each request introduces significant lag.
Luckily for my Javascript projects,
they tend towards the smaller side.

Beefy [http://didact.us/beefy/] is a project that presents an HTTP server,
which autocompiles your Javascript with Browserify.
To use beefy you install it:

npm install beefy -g # -g for global install

Django Integration

Beefy also works as a simple HTTP server.
It auto-generates your Javascript through Browserify,
but also serves normal static media.
This means you can point your STATIC_URL at Beefy,
and it will just work.

First you have to collect your static media into a single directory:

./manage.py collectstatic

Then,
from your STATIC_ROOT you run beefy,
pointing at your Browserify entry point:

beefy client.js

You can also pass the bundle you want it to generate with a :.
This allows you to point at the same Javascript file in development as in production:

beefy client.js:bundle.js

Beefy should now be serving on port 9966.
You can point Django at this for static media by using a setting:

STATIC_URL = 'http://localhost:9966/'

Beefy should now be serving your media properly,
and auto-compiling your javascript through Browserify.

Conclusion

With this workflow you can now write Javascript with a sane import system,
and have it Just Work in development.
I hope that it makes the Javascript part of your development a little bit more enjoyable.

 © Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

_static/down-pressed.png

blog/2013/index.html

 Navigation

 		
 index

 		Surfing in Kansas »

		A Walk in the Woods

		Announcing Write the Docs

		Prepping for the Pacific Crest Trail

		Sphinx Live Preview

		Google Summer of Code Book Sprint 2013

		Announcing Grok the Docs

		A new theme for Read the Docs

 © Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

_static/img/backpack.jpg

blog/drafts/conference-in-a-box.html

 Navigation

 		
 index

 		Surfing in Kansas »

Conference in a box

There are a lot of conferences in Portland. Each time someone new wants to start a conference, they have to re-learn all the lessons of how to do it well. They also have to spend the same money on services and assets for the conference. This is anything from lanyrds all the way to solid wifi and a venue.

I have talked with a few people over the past few months while organizing Write the Docs who want to help solve this problem. A lot of people are scared and intemidated (rightly so) of the act of organizing a conference. I walked into my first conference and organized it for 200 people (with help!). That was definitely a learning experience.

Ideas

Live off the margins
Enable people to do amazing things

 © Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

_static/down.png

_static/comment-bright.png

blog/2008/index.html

 Navigation

 		
 index

 		Surfing in Kansas »

		America...*sigh*

		Hackers and Painters

		Weekend

		Iowa

		My dad was wikipedia

		OCR with context

		Facebook Scrapage

		Facebook Update

		Earthquakes in politics

		OpenID FTW

		Cool Music Video

		Code on Launchpad

		Books to read

		NCUR 22

		Bill Clinton

		Security Vulnerabilities on the Internet

		Graduate

		Job hunt

		Awesome 3d

		Perfect Abstraction

		Website Interface Design

		Why I love the CLI

		Time to use that education

		Obama & Va

		Work this week

		Sweet ads

		Another neat ad

		All majors are the same

		Crazy times

		Predictive text FTW

		My Second Poem Ever

		Browser Login Discovery

		Power through conversation

		Graduation

		Lawrence Day 1

		Goodbye East Coast part 1

		JOB!!

		Things I say all the time

		Bear Head

		Change of RSS address

		Living well

		DjangoCon September 6-7, at Google!

		Automating tests in Django

		Testmaker .002 (Even easier automated testing in Django)

		Beatles Lecture

		Jim Henson before Sesame Street

		DjangoCon 2008

		Setting up Django and mod_wsgi

		Using Mock objects in Django for testing the current date

		Screencast: Debugging with the Django Error Page

		Screencast 2: Logging in Django, for fun and profit

		Using pdb, the Python Debugger (Django Debugging Series, Part 3)

		Easily packaging and distributing Django apps with setuptools and easy_install

		Big list of Django tips (and some python tips too)

		A blog post a day keeps the doctor away

		Announcing Django Crawler and django-test-utils

		Practical Django Testing Examples: Views

		The importance of not deleting blog posts (read: ideas)

		Encouraging Testing in Django

		Should reusable apps have templates?

		Debugging Django in Production Environments

		A start to the uber community

		Busy Busy

		Introduction to Python/Django testing: Basic Doctests

		Python gems of my own

		Gentlemans agreement on Django templates

		Luck and a New Life in Lawrence

		Django Aggregator v2 now has tagging, and you should too.

		Testmaker 0.2: Rewritten and improved

		The value of conventions, aka testmaker for template tags.

		Introduction to Python/Django testing: Basic Unit Tests

		New Design

		Post a day in review

		Introduction to Python/Django tests: Fixtures

		Making a Django Uber-Community

		Ponies

		Software that I use: Essentials 2008

		The problem with Django’s Template Tags

		The times, they are a changin

		Starting a Django Conventions Project and Reference

		Year in Review

 © Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

_static/plus.png

blog/drafts/beginners-guide-to-docs.html

 Navigation

 		
 index

 		Surfing in Kansas »

A beginners guide to writing documentation

A few days ago I started a campaign to improve documentation.
Now I have the first results to show from the work.

It started first with a presentation [http://docs.writethedocs.org/en/latest/presentations/#beginner-presentations] that I presented at PDX Python here in Portland.
The talk was very well recieved,
so I decided to write it up.

So, I present A beginners guide to writing documentation [http://docs.writethedocs.org/en/latest/writing/beginners-guide-to-docs/].
It is still very much a work in progress,
so I hope that you can provide feedback.
I welcome you to take this presentation and write up,
modify it, and present it somewhere.

If you think this work is important,
please support me on Gittip [http://www.gittip.com/ericholscher] .

 © Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 		latest

 		dev

include/blog_year.html

 Navigation

 		
 index

 		Surfing in Kansas »

 © Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

blog/2013/nov/1/new-theme-read-the-docs.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		Surfing in Kansas »

A new theme for Read the Docs

Read the Docs [http://readthedocs.org/] hasn’t changed much visually since it launched.
We have had a default theme that is a slight change over the Sphinx theme.
A few colors and a nice mobile interface was about it.

That is all about to change.
We are proud to announce a new default theme [http://docs.readthedocs.org/en/latest/] for Read the Docs!

Creation Story

Dave Snider [https://twitter.com/enemykite] approached me about a month ago,
offering to help improve the documentation ecosystem.
He is a designer with an interest in documentation,
and wanted to help out with Read the Docs.

He has built a fantastic new default theme for Read the Docs.
We talked through a lot of the functionality of the site,
and how people tend to use documentation.
I think we have come up with a really great solution that will look great,
but also work well.

Using it

There are 2 ways that you can use this theme on Read the Docs.
The first is to simply leave your html_theme variable set to default.
This is now the default Read the Docs theme.
You can also set RTD_NEW_THEME = True in your project’s conf.py,
and we will use our theme when building on Read the Docs no matter what html_theme is set to.

After you change these settings,
simply rebuild your docs and the theme should update.
More information about the theme can be found on the theme documentation page [http://docs.readthedocs.org/en/latest/theme.html]

If you want to continue using the old theme,
simply set RTD_OLD_THEME = True in your conf.py.

Screenshots

Full site

The full documentation page is now beautiful and streamlined.
We got rid of a bunch of the visual clutter and integrated a full-project Table of Contents on the left side.
When you go into a specific page,
the page-level contents get embedded in the sidebar as well.
This allows you to keep context inside the documentation when you land on a page from a search.

Old

[image: http://i.imgur.com/hWOnmKy.png]
 [http://i.imgur.com/hWOnmKy.png]

New

[image: http://i.imgur.com/7oLntvR.png]
 [http://i.imgur.com/7oLntvR.png]

Sidebar

The sidebar is a major feature of Read the Docs.
For a project with a custom theme,
it is the only interaction with Read the Docs.
This means we need to pack most of the functionality we offer into a small space.

In the new theme,
the sidebar is integrated into the bottom left of the theme.
For all other projects,
it stays in the same place in the bottom right.
If you have a theme and want to better integrate our sidebar,
please let me know.

The old version was very simple,
providing access to a version selector.
With the new version we wanted to do more.

Old

The old badge let you:

		Change versions

		Go back to Read the Docs

[image: http://i.imgur.com/CBDPzbD.png]
 [http://i.imgur.com/CBDPzbD.png]

New

The new badge lets you:

		Change versions

		Go back to Read the Docs

		See the current version

		Show if the current version is out of date

		Download docs for offline viewing

		Contribute edits on GitHub or Bitbucket

		Do a full-text search (Coming soon)

[image: http://i.imgur.com/9DRP8fj.png]
 [http://i.imgur.com/9DRP8fj.png]

Mobile

The new theme really shines on mobile.
We provide a beautiful interface for phones and tablets,
while staying completely functional.

[image: http://i.imgur.com/29uEpVs.png]
 [http://i.imgur.com/29uEpVs.png]

Conclusion

I think that this theme is a great addition to the documentation ecosystem.
It is highly functional and beautiful,
allowing users to easily navigate and find what they need.

We have a few more tricks up our sleves,
but I believe the theme is ready to launch today.
Over the next few weeks we’ll be adding a bit more functionality to it,
which should be even more delightful.

I hope that you enjoy using it.
If you have any feedback,
please open an issue [http://github.com/snide/sphinx_rtd_theme/issues] on GitHub for the repo.

If you want to support work like this,
help fund development on Read the Docs [https://www.gittip.com/readthedocs/] on Gittip.

 © Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

blog/drafts/code-conduct-organizers-perspective.html

 Navigation

 		
 index

 		Surfing in Kansas »

Codes of Conduct, an Organizers Perspective

I helped organize my first conference last year,
Write the Docs [http://conf.writethedocs.org/na/2013/].
It was a great experience,
but also rather stressful.
It turns out that organizing things is an interesting exercise in managing fear and risk.
There is so much that could happen badly,
and this is scary as hell.

As an organizer,
I found myself looking for systems to minimize stress and uncertainty.
Uncertainty is the breeding ground of fear.

Code of Conduct

We established a Code of Conduct [http://conf.writethedocs.org/code-of-conduct.html] for the conference because it felt like the right thing to do.
I believe in increasing diversity,
and I know that Codes of Conduct matter to people who I care about.
So,
it initially started out as a way to signal to people that we really care.

As the conference came closer though,
it became really valuable for me as an organizer in another way.
It was one aspect of the conference that I didn’t have to worry about.
Something bad might happen,
but you can’t remove that possibility from existing.
However,
if something bad did happen,
we had a plan.
I felt prepared to deal with any issues.
This was much easier thanks this amazing document [http://geekfeminism.wikia.com/wiki/Conference_anti-harassment/Policy#Internal_version_for_conference_staff] from the Geek Feminism Wiki,
which provides an example internal policy to follow.

The Code of Conduct also gave us a leg to stand on if there were any issues.
Someone couldn’t complain about being reprimanded or expelled from the conference by pleading ignorance.
We mentioned the Code of Conduct on speaker signups,
on the website,
and in the opening address to the conference.

Conclusion

Adding a Code of Conduct for your conference will reduce a source of stress as an organizer.
If anything happens,
you have a playbook ready,
and you won’t be caught off guard.

If you need a place to start,
the Geek Feminism Wiki [http://geekfeminism.wikia.com/wiki/Conference_anti-harassment/Policy] has you covered.
I hope that you consider adding a Code of Conduct to your next event.
It means a lot,
and will let you sleep easier at night.

 © Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

_static/minus.png

blog/2007/index.html

 Navigation

 		
 index

 		Surfing in Kansas »

		Updating website

		Good Software is SO hard to find..

		iPhone

		People

		Music

		Network KVM

		Goal

		UMW Blog Ring

		Digg/Wordpress plugin ideas

		Firefox Extensions I Use

		Cool site: archive.org

		Writing Advice?

		Last semester in stone

		Schoolwork

		Fall is coming (and good content)

		Ideas need context

		Getting Real

		Browser Tabs

		Lego Lovers

		Python Easy Install

		Merry Christmas

		Stanford U

		Django

		First Post

 © Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

_static/img/me.jpg

search.html

 Navigation

 		
 index

 		Surfing in Kansas »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

_static/up-pressed.png

_static/comment.png

blog/2013/sep/23/letter-to-an-old-friend.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		Surfing in Kansas »

A letter I wrote to an old friend Josh,
after I had come home from the PCT.
It was sent on August 7th, 2013.

Howdy,

Indeed the trail satisfied many parts of the soul. Sadly I hurt my foot and had to end the trail before I reached the end, but I still spent enough time out there to understand some of the lessons it has to teach.

I always like to think back to how life was for me before college. It’s crazy how much of a different person I was going in and coming out. We chiseled away at the possibilities of humanity, and ended up with a pretty good statue at the end.

Being on the trail is the closest that I have had to that feeling in my adult life. You are given the time to think without constraint, and bullshit all day long with amazing people. It feels much like college, in that the friends I’ve made will be life long.

It has changed what I want to do with myself for the foreseeable future, seeking out more situations where the intensity and breadth of the human soul can come to bear. It felt like the most natural thing in the world to slip into walking everyday, and living a simple life.

Simple life with good people, a profound and fundamental way to enjoy the world. It showed me how full of bullshit and tedium the “normal” world can be, and how a reduced subset of choice can really expand your happiness.

The months I spent on the trail were some of the happiest of my life. I will look to hopefully relive them again in a few years, but like many things in life, the first time is likely to be the sweetest. Hopefully I won’t go through life looking backwards, trying to feel it again, and will find solace and peace again.

Coming back to reality has been hard, but Portland is a good place to come back to. I have been surrounding my self with good food, mostly from Farmers Markets. Lots of berries and salads, things you can’t eat on the trail. I am also looking into doing some bike touring, once my foot heals, so that I can still explore. Exploring on bike will be a different experience, but one I think I’ll quite enjoy.

I now also have the experience to go and live in the woods for a week at a time. This freedom opens a lot of possibility for adventure in the future. Having amazing tools, the knowledge , wherewithal, and drive to go out into nature again makes me happy.

May there be many more adventures for us both.

Cheers,

Eric

 © Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 		latest

 		dev

favorites.html

 Navigation

 		
 index

 		Surfing in Kansas »

Favorite Things

Favorite Graduation Speeches

Bill Watterson - http://web.mit.edu/jmorzins/www/C-H-speech.html
Steve Jobs - https://www.youtube.com/watch?v=D1R-jKKp3NA

 © Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

_images/backpack.jpg

_static/up.png

blog/2010/index.html

 Navigation

 		
 index

 		Surfing in Kansas »

		A simple Perl IRCBot

		Django Inspect: A generic introspection API for Django models

		Large Problems in Django, Mostly Solved: Documentation

		The role of designers in the Django community

		Large Problems in Django, Mostly Solved: Delayed Execution

		Announcing Read The Docs

		Lessons Learned From The Dash: Easy Django Deployment

		A better webhook for code hosting

		Lessons Learned From The Dash: Nginx SSI

		New features on Read The Docs

		Conference Fun

		Virtualenv Tips

		Building a Django App Server with Chef: Part 3

		Building a Django App Server with Chef: Part 4

		Site upgrades

		Correct commands to check out and update VCS repos

		Using Haystack to index non-database content

		Required Reading

		Celery Tips

		Django Testing Mailing List

		Running Hudson matrix builds on multiple machines

		Using ZNC, an IRC bouncer

		Building a Django App Server with Chef: Part 1

		Building a Django App Server with Chef: Part 2

 © Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

_images/bike.png

blog/drafts/google-book-sprint-2013.html

 Navigation

 		
 index

 		Surfing in Kansas »

Google Summer of Code Book Sprint 2013

Or how I learned to stop worrying and write a book.

Last week, I flew down to Mountain View, Ca for the Google Summer of Code Book Sprint.
It is an event that brings open source projects together to write a book in a week.
20 people and 3 projects produced books over a sunny and well-fed week.
Kindly hosted by Google,
we spent 5 days hanging out at their campus writing away.
The three projects involved were:

		OpenMRS - A medical records system used in many developing countries, originally created to help with AIDS in Africa.

		BRL-CAD - A CAD program for developing 3D models, one of the first open source projects from the United States Military.

		Mallard - An XML based documentation framework, from the Gnome Documentation Team.

I was what they called a “free agent”,
someone not involved in a specific project that would help out.
Free agents are useful for providing an outside viewpoint to the projects.

Writing a book was an amazing experience.
It has always felt out of my reach,
but time limiting it to a week (really 3 days),
made the goal more approachable.
I hope this post will help you conceptualize the process of how we wrote the book,
and possibly think about doing it yourself.
After this experience I think it is something that anyone can do,
as long as you keep the scope small.

You can see the finished book [http://flossmanuals.net/openmrs-developers-guide/] for OpenMRS online.

Monday

Heresy

On Monday,
we got together to play some games to break the ice.
We were asked to write our most polarizing documentation viewpoints on an index card,
and they were read out loud in front of the room.
People arranged themselves along a spectrum of agreement and disagreement.
Physically arranged themselves,
by walking to different corners of the room.
Then we presented reasons for our views on the topics mentioned.

Some examples are:

		Developers MUST write documentation

		WYSIWYG editors are evil

This exercise acted to show how diverse a crowd we had.
Some people were developers,
some were tech writers,
some were students,
some were teachers,
people ranged all across the spectrum of experience.
You learned to respect where people were coming,
which might be very different from your background.

Audience and Outcomes

After the ice breakers,
we did an exercise where each member of the team was broken into a separate group,
and had to write down their views for the book.
We were told to have up to 3 audiences in mind, and 3 take aways someone would have from reading the book.
This allowed people to flesh out their idea of the book without other members of their team present.
The idea behind this exercise was to eliminate the group-think that happens when a group works to shape an idea.
It also allowed us free agents to get an idea of what book people were writing,
and which we might be able to help out with.

Once we all fleshed out our ideas individually,
the groups got back together and talked through what they thought the book should be.
This is the stage where free agents chose their team as well,
so that they could see the vision for the book.

As a project group,
we then chose the audiences and takeaways for the book.
This is the part where I joined the OpenMRS group.
They were writing an introductory book for developers who wanted to get involved in the project,
and I felt I could help out as a developer coming to the project fresh.

We assumed everyone would be new to OpenMRS. We then broke this down into 3 types of things people might be new to:

		Developers new to Health IT

		Developers new to Open Source

		Developers new to Software Development in General

The outcomes we wanted people to come away with were:

		Understand how to become a member of the OpenMRS community

		Be able to get the OpenMRS environment set up

		Feel confident doing development on OpenMRS modules

Tuesday

Table of Contents

On Tuesday we got together in the morning to come up with a table of contents based on our audience and outcomes.
Having the audience and outcomes written down really helped guide and focus the book.
At each step someone could ask “is this really serving our intended audience?”
We only had 2 and a half days to actually write,
so we needed to aggressively trim the content to something that we could accomplish in that time.

Our table of contents ended up looking like:

		
		Introduction

		
		Welcome to OpenMRS!

		
		Saving Lives With Software

		
		The Need for Health IT

		Our Response

		OpenMRS Today

		
		Community

		
		Working Cooperatively

		Collaboration Tools

		
		Technology

		
		Architecture

		Data Model

		Development Process

		Get Set Up

		
		Case Study

		
		Creating your First Module

		
		What’s Next?

		
		Get Involved

		Get Support

		Developer Checklist

Promotion Plan

We also talked through a plan to release the book into the community.
There was an understanding that if you don’t promote the book,
the time spent writing it might go to waste.
Having a way to build momentum for the project in the community would ensure the book continued to live on after this week.

Our original promotion plan looked like:

		Blog post announcing the book on the project blog

		Tell developers in the project about it, so they can recommend it to people

		Add it to all of our beginner documentation

		Talk with existing developers to make sure the information in the book is correct

		Add a JIRA project so we can track issues with the book

		Add a survey so that we can get feedback on the book

		Make sure that updating the book is added to release processes

Compare and Contrast

After coming up with ideas inside our own teams,
we sent a member to each other team to hear what they had come up with.
We were encouraged to steal their ideas if they had something interesting,
and to provide feedback if we saw something missing.
This worked really well at removing group think again,
and making sure that you didn’t have a huge blind spot in your plans.

Start writing

After lunch on Tuesday,
it was time to start writing.
This part was referred to as “content production”,
there was a specific focus on just getting pen to paper.
Editing would come later.
We worked until 8 in the evening,
and then headed back to the hotel.

Around the pool that evening we spent time hanging out and talking about ideas.
In particular I talked to the Mallard team,
comparing and contrasting it to Sphinx.

Wednesday

Content production continued Wednesday.
The goal was to have a complete book by Wednesday night,
and then spend Thursday refining and editing it down.

Thursday

Thursday was spent writing until around lunch,
then the afternoon was spent editing.
We formed groups of 2 or 3 which looked over a section at a time.
Each section had an average of 3 chapters,
and you looked to make sure the flow of all the chapters made sense together.
We would each read a chapter and then talk over each of the issues that we found.

At 6pm on Thursday we called the books done,
and all celebrated.

Friday

On Friday we got together to do a postmortem on the process.
We talked again about the promotion plan,
assigning items to specific people to make sure they got done.

This was all along the theme of continuing momentum forward.
We now had a list of tasks,
with people who were responsible for getting them done.
This made me feel a lot more confident that our work would live on,
and really make a difference in the community.

Take aways

I think the mixing of ideas behind groups was really key to success in this endeavor.
Group think is potent,
and having someone with an outside perspective come in can really reveal your blind spots.

Along these lines,
the evenings hanging out by the pool talking through your work was really important.
You can’t sit and write 24/7,
and having a place to escape and let you ideas breathe really allows you to form them.
I think throughout the week everyone was thinking about their book pretty non-stop,
but were weren’t necessarily writing non-stop.

I come away from this experience with a lot of inspiration and perspective.
Writing a book is something that anyone can do,
with a little help from their friends.

 © Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

blog/2011/index.html

 Navigation

 		
 index

 		Surfing in Kansas »

		Handling Django Settings Files

		Read the Docs Updates

		Using Reviewboard with Git

		Read the Docs Update

 © Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

_static/img/surfhead.png

blog/2012/index.html

 Navigation

 		
 index

 		Surfing in Kansas »

		Why Read the Docs matters

		Interesting projects on Read the Docs: Teaching

		2012 Year in Review

 © Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

pct/index.html

 Navigation

 		
 index

 		Surfing in Kansas »

Pacific Crest Trail

I walked 800 miles of the PCT from April 15-June 17, 2013.

		Thoughts
		Text

 © Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

blog/index.html

 Navigation

 		
 index

 		Surfing in Kansas »

Blog Entries

2013

		A Walk in the Woods

		Announcing Write the Docs

		Prepping for the Pacific Crest Trail

		Help me improve documentation

		A letter to an old friend

		Writing a Beginners Guide to Documentation

		Sphinx Live Preview

		Google Summer of Code Book Sprint 2013

		Announcing Grok the Docs

		A new theme for Read the Docs

2012

		Why Read the Docs matters

		The festival that felt like a hug

		Help fund Read the Docs

		Interesting projects on Read the Docs: Teaching

		2012 Year in Review

2011

		Handling Django Settings Files

		Read the Docs Updates

		Using Reviewboard with Git

		Read the Docs Update

2010

		A simple Perl IRCBot

		Django Inspect: A generic introspection API for Django models

		Large Problems in Django, Mostly Solved: Documentation

		The role of designers in the Django community

		Large Problems in Django, Mostly Solved: Delayed Execution

		Announcing Read The Docs

		Lessons Learned From The Dash: Easy Django Deployment

		A better webhook for code hosting

		Lessons Learned From The Dash: Nginx SSI

		New features on Read The Docs

		Conference Fun

		Djangocon Talk

		Virtualenv Tips

		Building a Django App Server with Chef: Part 3

		Building a Django App Server with Chef: Part 4

		Site upgrades

		Correct commands to check out and update VCS repos

		Using Haystack to index non-database content

		Required Reading

		Celery Tips

		Django Testing Mailing List

		Running Hudson matrix builds on multiple machines

		Using ZNC, an IRC bouncer

		Building a Django App Server with Chef: Part 1

		Building a Django App Server with Chef: Part 2

2009

		Django now has fast tests

		Review of Pro Django by Marty Alchin (1/2)

		Encouraging Web Interaction for University Students

		Django Conventions Project Update

		Using rsync with django

		Incredibly useful SSH flag

		Automatically apply patches from Django’s (or any) Trac

		Google Summer of Code

		Twitter Spam

		Really easy SSH tunneling

		Pycon and Euro Djangocon

		Testing AJAX Views in Django

		Django’s Summer of Code students announced!

		Adding Google Analytics to Sphinx Docs

		A playground for Django Template tags and filters

		EuroDjangoCon Talk: Testing Django

		Migrating Django Test Fixtures Using South

		Enable setup.py test in your Django apps

		Pretty Django Error Pages

		Hacker Book Club

		Debugging Django in Production Revisited

		Token Testing Talk Slides: Djangocon 2009

		Easily Running the Django Test Suite

		What they didn’t teach me in college

		Large Problems in Django, Mostly Solved: APIs

		The importance of striving for awesome.

		Django Testing Code Coverage

		You should stay for the sprints

		Announcing Kong: A server description and deployment testing tool

		Finding Missing Indexes That Django Wants (Postgres)

		Writing Code with Designers

		Large Problems in Django, Mostly Solved: Search

		Correct way to handle default model fields.

		Class Based Template Tags

		Making Template Tag Parsing Easier

		Adding testing to pip

		Large Problems in Django, Mostly Solved: Database Migrations

		Correct way to handle mobile browsers

Warning

Everything past here is from college. I was living in a bit of a different world back then, so buyer beware.

2008

		America...*sigh*

		Hackers and Painters

		Weekend

		Iowa

		My dad was wikipedia

		OCR with context

		Facebook Scrapage

		Facebook Update

		Earthquakes in politics

		OpenID FTW

		Cool Music Video

		Code on Launchpad

		Books to read

		NCUR 22

		Bill Clinton

		Security Vulnerabilities on the Internet

		Graduate

		Job hunt

		Awesome 3d

		Perfect Abstraction

		Website Interface Design

		Why I love the CLI

		Time to use that education

		Obama & Va

		Work this week

		Sweet ads

		Another neat ad

		All majors are the same

		Crazy times

		Predictive text FTW

		My Second Poem Ever

		Browser Login Discovery

		Power through conversation

		Graduation

		Lawrence Day 1

		Goodbye East Coast part 1

		JOB!!

		Things I say all the time

		Bear Head

		Change of RSS address

		Living well

		DjangoCon September 6-7, at Google!

		Automating tests in Django

		Testmaker .002 (Even easier automated testing in Django)

		Beatles Lecture

		Jim Henson before Sesame Street

		DjangoCon 2008

		Setting up Django and mod_wsgi

		Using Mock objects in Django for testing the current date

		Screencast: Debugging with the Django Error Page

		Screencast 2: Logging in Django, for fun and profit

		Using pdb, the Python Debugger (Django Debugging Series, Part 3)

		Easily packaging and distributing Django apps with setuptools and easy_install

		Screencast: Django Command Extensions

		Getting started with Pinax

		Using pdb to debug management commands and unit tests (Debugging Django Series,Part 4)

		Big list of Django tips (and some python tips too)

		A blog post a day keeps the doctor away

		Announcing Django Crawler and django-test-utils

		Practical Django Testing Examples: Views

		The importance of not deleting blog posts (read: ideas)

		Encouraging Testing in Django

		Should reusable apps have templates?

		Debugging Django in Production Environments

		A start to the uber community

		Busy Busy

		Introduction to Python/Django testing: Basic Doctests

		Python gems of my own

		Gentlemans agreement on Django templates

		Luck and a New Life in Lawrence

		Django Aggregator v2 now has tagging, and you should too.

		Testmaker 0.2: Rewritten and improved

		The value of conventions, aka testmaker for template tags.

		Introduction to Python/Django testing: Basic Unit Tests

		New Design

		Post a day in review

		Introduction to Python/Django tests: Fixtures

		Making a Django Uber-Community

		Ponies

		Software that I use: Essentials 2008

		The problem with Django’s Template Tags

		The times, they are a changin

		Starting a Django Conventions Project and Reference

		Year in Review

2007

		Updating website

		Good Software is SO hard to find..

		iPhone

		People

		Music

		Network KVM

		Goal

		UMW Blog Ring

		Digg/Wordpress plugin ideas

		Firefox Extensions I Use

		Cool site: archive.org

		Writing Advice?

		Last semester in stone

		Schoolwork

		Fall is coming (and good content)

		Ideas need context

		Getting Real

		Browser Tabs

		Lego Lovers

		Python Easy Install

		Merry Christmas

		Stanford U

		Django

		First Post

 © Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

_static/img/bike.png

blog/drafts/new-theme-read-the-docs.html

 Navigation

 		
 index

 		Surfing in Kansas »

A new theme for Read the Docs

We have been hard at work improving Read the Docs [http://readthedocs.org/] over the past month.
A large amount of back end work has been going on,
and now we have a brand new documentation theme to showcase it.

We have looked at how users use documentation,
and built a beautiful and highly functional new interface for browsing documentation.
We have come up with a solution that looks as great as it functions.

The New Theme

Full site

The full documentation page is now beautiful and streamlined.
We got rid of the visual clutter and integrated a full-project Table of Contents on the sidebar.
When you go into a specific page,
the page-level contents get embedded in the sidebar as well.
This allows you to keep context inside the documentation when you land on a page from a search.

Old

[image: http://i.imgur.com/hWOnmKy.png]
 [http://i.imgur.com/hWOnmKy.png]

New

[image: http://i.imgur.com/7oLntvR.png]
 [http://i.imgur.com/7oLntvR.png]

Flyout

Read the Docs provides a lot of functionality for documentation projects.
The flyout we provides on each page is the avenue to accessing that functionality.
We need to pack all our functionality into this small space.

In the new theme,
the flyout is integrated into the bottom left of the theme.
For all other projects,
it stays in the same place in the bottom right.

The old version was very simple,
providing access to a version selector.
With the new version we wanted to do more.

Old

The old flyout let you:

		Change versions

		Go back to Read the Docs

[image: http://i.imgur.com/CBDPzbD.png]
 [http://i.imgur.com/CBDPzbD.png]

New

The new flyout lets you:

		Change versions

		Go back to Read the Docs

		See the current version

		Show if the current version is out of date

		Download docs for offline viewing

		Contribute edits on GitHub or Bitbucket

		Do a full-text search (Coming soon)

[image: http://i.imgur.com/9DRP8fj.png]
 [http://i.imgur.com/9DRP8fj.png]

Mobile

The new theme really shines on mobile.
We provide a beautiful interface for phones and tablets,
while staying completely functional.

[image: http://i.imgur.com/29uEpVs.png]
 [http://i.imgur.com/29uEpVs.png]

Using it

There are two ways that you can use this theme on Read the Docs.
The first is to simply leave your html_theme variable set to default.
This is now the default Read the Docs theme.
You can also set RTD_NEW_THEME = True in your project’s conf.py,
and we will use our theme when building on Read the Docs no matter what html_theme is set to.

After you change these settings,
simply rebuild your docs and the theme should update.
More information about the theme can be found on the theme documentation page [http://docs.readthedocs.org/en/latest/theme.html]

If you want to continue using the old theme,
simply set RTD_OLD_THEME = True in your conf.py.

Creation Story

Dave Snider [https://twitter.com/enemykite] approached me about a month ago,
offering to help improve the documentation ecosystem.
He is a designer with an interest in documentation,
and wanted to help out with Read the Docs.
He built this fantastic new theme for Read the Docs,
and is hard at work improving the main site as well.

Conclusion

This theme is a great addition to the documentation ecosystem.
It is highly functional and beautiful,
allowing users to easily navigate and find what they need.

We have a few more tricks up our sleeves,
but theme is ready to launch today.
Over the next few weeks we’ll be adding a bit more functionality to it,
which should be even more delightful.

I hope that you enjoy using it.
If you have any feedback,
please open an issue [http://github.com/snide/sphinx_rtd_theme/issues] on GitHub for the repo.
To follow announcements for Read the Docs,
follow us on Twitter [http://twitter.com/readthedocs]

If you want to support work like this,
help fund development on Read the Docs [https://www.gittip.com/readthedocs/] on Gittip.

 © Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

blog/drafts/announcing-grok-the-docs.html

 Navigation

 		
 index

 		Surfing in Kansas »

Announcing Grok the Docs

Are my docs working?

Are users getting what they need?

I’ve asked myself these questions a lot.
Historically I have put Google Analytics on my doc pages,
and called it good.
I would browse over the Analytics data every once in a while,
gleaning basically zero interesting data out of it.

Read the Docs [http://rtfd.org] hosts a lot of documentation,
and I want to help these folks understand how their docs are being used.
So I have been working on a project for the last month called Grok the Docs [https://api.grokthedocs.com].

Grok the Docs [https://api.grokthedocs.com] is a bit different,
with the main difference being it embeds the information in the page for you.
This is interesting because it adds context to the data.
Context allows you to see all of the analytic data at once,
in a format that makes sense within the documentation.

Surfacing analytic data in the page is great for the maintainer and user alike.
The maintainer can see what parts of their docs are being heavily used,
and which parts aren’t being used as much.
Users can see where other people are ending up,
which is probably where they want to go too.

This is very much just a tech demo currently.
I would love feedback from folks about how I could improve the display of the data.
Also, it would be great if you have ideas for other additoinal functionality that could be added.
This is very much an experiment currently,
so I’d love to hear any thoughts you have.

Once the code is more baked and solid,
the plan is to turn it on for all Read the Docs users.
After I do a full rollout across Read the Docs,
I’ll consider opening it to other people.
The code is currently closed source,
and will likely remain so.
That said,
it will always be free for documentation on Read the Docs.

This project was done as part of my ongoing work to improve documentation.
If you think this work is important,
you should support me on Gittip [http://www.gittip.com/ericholscher].

Example

This shows how user might harness this data.

[image: https://dl.dropboxusercontent.com/u/372293/GTD-Example.gif]

 © Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

pct/thoughts.html

 Navigation

 		
 index

 		Surfing in Kansas »

Thoughts

This was written on the trail in Idyllwild, mile ~150.
It’s amazing how fully formed my thoughts on the trail were at such an early junction.

Text

The trail has been an amazing mental experience as well. I’ve run into some amazing people, and it’s only been about 10 days. I’ve hiked with the same group (Team Horseshoe) until now, and have leap-frogged a few other groups (Team America, Skip & 2Step, Legend, Double Sprainbow & Ollie, Mike & Jill). It feels like I’ve known these folks for years, and it’s been less than 2 weeks. The trail builds an amazing kind of rapport, where you can let your guard down and get to know people well. The removal of “What do you do?” from the common vocabulary of life is a welcome one. It feels like you get farther into the interesting tidbits of life faster. The small talk becomes deeper.

I’ve heard about a study that says people are more creative in rooms with taller ceilings. Out here it feels like there is no ceiling, and along with that no limit to how one might think about the world. It’s neat seeing what creative ways people have of eating, sleeping, walking. All of these things we take for granted in everyday life become all there is, and each person has a different take on it.

Under the stars at night, the mind is free to wonder. There are no deadlines, no bosses, and no force to the way of life. Everyone is here because they want to be, kindred spirits from across the globe. They come together for the most fruitless and senseless act, to walk, yet it means so much at the same time. The act of removing yourself from society (“the other world”) is a strong statement, while, also being a very easy one. So much about walking this path feels right, much more than walking down a street ever has.

So it continues, only 10 days in, the great migration along the path of most resistance. As a great man once said, the best adventures answer questions that you didn’t even know to ask.

 © Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

blog/2009/index.html

 Navigation

 		
 index

 		Surfing in Kansas »

		Django now has fast tests

		Review of Pro Django by Marty Alchin (1/2)

		Encouraging Web Interaction for University Students

		Django Conventions Project Update

		Using rsync with django

		Incredibly useful SSH flag

		Automatically apply patches from Django’s (or any) Trac

		Google Summer of Code

		Twitter Spam

		Really easy SSH tunneling

		Pycon and Euro Djangocon

		Testing AJAX Views in Django

		Django’s Summer of Code students announced!

		Adding Google Analytics to Sphinx Docs

		A playground for Django Template tags and filters

		EuroDjangoCon Talk: Testing Django

		Migrating Django Test Fixtures Using South

		Enable setup.py test in your Django apps

		Easily Running the Django Test Suite

		What they didn’t teach me in college

		Large Problems in Django, Mostly Solved: APIs

		The importance of striving for awesome.

		Django Testing Code Coverage

		You should stay for the sprints

		Announcing Kong: A server description and deployment testing tool

		Finding Missing Indexes That Django Wants (Postgres)

		Writing Code with Designers

		Large Problems in Django, Mostly Solved: Search

		Correct way to handle default model fields.

		Class Based Template Tags

		Making Template Tag Parsing Easier

		Adding testing to pip

		Large Problems in Django, Mostly Solved: Database Migrations

		Correct way to handle mobile browsers

 © Copyright 2013, Eric Holscher.
 Created using Sphinx 1.1.3.

